如圖1,以邊長為8的正方形紙片ABCD的邊AB為直徑做⊙O,交對角線AC于點(diǎn)E.
(1)線段AE=______
【答案】
分析:(1)連接BE,則可得出△AEB是等腰直角三角形,再由AB=8,可得出AE的長.
(2)①連接OA、OF,可判斷出△OAF是等邊三角形,從而可求出AF的長;②此時(shí)可得DAM=30°,根據(jù)AD=8可求出AF的長,也可判斷DM與⊙O的位置關(guān)系;③根據(jù)AD等于⊙O的直徑,可得出當(dāng)DM與⊙O相切時(shí),點(diǎn)D在⊙O上,從而可得出α的度數(shù).
解答:解:(1)

連接BE,
∵AC是正方形ABCD的對角線,
∴∠BAC=45°,
∴△AEB是等腰直角三角形,
又∵AB=8,
∴AE=4

;
(2)①

連接OA、OF,
由題意得,∠NAD=30°,∠DAM=30°,
故可得∠OAM=30°,∠DAM=30°,
則∠OAF=60°,
又∵OA=OF,
∴△OAF是等邊三角形,
∵OA=4,
∴AF=OA=4;
②

連接B'F,此時(shí)∠NAD=60°,
∵AB'=8,∠DAM=30°,
∴AF=AB'cos∠DAM=8×

=4

;
此時(shí)DM與⊙O的位置關(guān)系是相離;
③

∵AD=8,直徑的長度相等,
∴當(dāng)DM與⊙O相切時(shí),點(diǎn)D在⊙O上,
故此時(shí)可得α=∠NAD=90°.
點(diǎn)評:此題屬于圓的綜合題,主要是仔細(xì)觀察每一次旋轉(zhuǎn)后的圖形,根據(jù)含30°角的直角三角形進(jìn)行計(jì)算,另外在解答最后一問時(shí),關(guān)鍵是判斷出點(diǎn)D的位置,有一定難度.