在數(shù)學(xué)學(xué)習(xí)過程中,通常是利用已有的知識與經(jīng)驗(yàn),通過對研究對象進(jìn)行觀察、實(shí)驗(yàn)、推理、抽象概括,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,揭示研究對象的本質(zhì)特征.
比如“同底數(shù)冪的乘法法則”的學(xué)習(xí)過程是利用有理數(shù)的乘方概念和乘法結(jié)合律,由“特殊”到“一般”進(jìn)行抽象概括的:22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整數(shù)).
探索問題:
(1)比較下列各組數(shù)據(jù)的大。
2
3
2+1
3+1
,②
2
3
2+2
3+2
,③
2
3
2+3
3+3
,④
2
3
2+4
3+4
,….
(2)請你根據(jù)上面的材料歸納出a、b、c(a>b>0,c>0)之間的一個數(shù)學(xué)關(guān)系式;并用已學(xué)的數(shù)學(xué)知識說明你發(fā)現(xiàn)結(jié)論的正確性.
(3)試用(2)中你歸納的數(shù)學(xué)關(guān)系式,解釋下面生活中的一個現(xiàn)象:“若m克糖水里含有n克糖,再加入k克糖(仍不飽和),則糖水更甜了”.
分析:(1)分別進(jìn)行計算即可判斷出大;
(2)根據(jù)分式的定義以及(1)的計算規(guī)律寫出即可;
(3)根據(jù)糖水的濃度列出分式,然后再進(jìn)行計算作出判斷.
解答:解:(1)比較下列各組數(shù)據(jù)的大。
2+1
3+1
=
3
4
,
2+2
3+2
=
4
5
2+3
3+3
=
5
6
,
2+4
3+4
=
6
7
,
∴①
2
3
2+1
3+1
,②
2
3
2+2
3+2
,③
2
3
2+3
3+3
,④
2
3
2+4
3+4
;

(2)你根據(jù)上面的材料可得:
b
a
b+c
a+c

說明:∵
b
a
-
b+c
a+c
=
b(a+c)
a(a+c)
-
a(b+c)
a(a+c)
=
ab+bc-ab-ac
a(a+c)
=
bc-ac
a(a+c)
=
c(b-a)
a(a+c)
,
又∵a>b>0,c>0,
∴a+c>0,b-a<0,
c(b-a)
a(a+c)
<0,
b
a
-
b+c
a+c
<0,
即:
b
a
b+c
a+c
成立;

(3)∵原來糖水中糖的質(zhì)量分?jǐn)?shù)=
n
m
,
加入k克糖后糖水中糖的質(zhì)量分?jǐn)?shù)+
n+k
m+k

由(2)
b
a
b+c
a+c
可得
n
m
n+k
m+k
,
所以糖水更甜了.
點(diǎn)評:本題考查了分式的混合運(yùn)算,讀懂題目信息,熟練掌握并靈活運(yùn)用整式的加減混合運(yùn)算進(jìn)行計算是解題的關(guān)鍵,也是本題的難點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在數(shù)學(xué)學(xué)習(xí)過程中,通常是利用已有的知識與經(jīng)驗(yàn),通過對研究對象進(jìn)行觀察、實(shí)驗(yàn)、推理、抽象概括,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,揭示研究對象的本質(zhì)特征.
比如“同底數(shù)冪的乘法法則”的學(xué)習(xí)過程是利用有理數(shù)的乘方概念和乘法結(jié)合律,由“特殊”到“一般”進(jìn)行抽象概括的:
22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整數(shù)).我們亦知:
2
3
2+1
3+1
2
3
2+2
3+2
,
2
3
2+3
3+3
,
2
3
2+4
3+4
,…
(1)請你根據(jù)上面的材料歸納出a、b、c(a>b>0,c>0)之間的一個數(shù)學(xué)關(guān)系式;
(2)試用(1)中你歸納的數(shù)學(xué)關(guān)系式,解釋下面生活中的一個現(xiàn)象:“若m克糖水里含有n克糖,再加入k克糖(仍不飽和),則糖水更甜了”;
(3)如圖,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根據(jù)這個圖形提煉出與(1)中相精英家教網(wǎng)同的關(guān)系式并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在數(shù)學(xué)學(xué)習(xí)過程中,通常是利用已有的知識與經(jīng)驗(yàn),通過對研究對象進(jìn)行觀察、實(shí)驗(yàn)、推理、抽象概括,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,揭示研究對象的本質(zhì)特征.
比如“同底數(shù)冪的乘法法則”的學(xué)習(xí)過程是利用有理數(shù)的乘方概念和乘法結(jié)合律,由“特殊”到“一般”進(jìn)行抽象概括的:22×23=25,23×24=27,22×26=28…?2m×2n=2m+n…?am×an=am+n(m、n都是正整數(shù)).
我們亦知:
2
3
2+1
3+1
2
3
2+2
3+2
,
2
3
2+3
3+3
,
2
3
2+4
3+4

(1)請你根據(jù)上面的材料歸納出a、b、c(a>b>0,c>0)之間的一個數(shù)學(xué)關(guān)系式.
(2)試用(1)中你歸納的數(shù)學(xué)關(guān)系式,解釋下面生活中的一個現(xiàn)象:“若m克糖水里含有n克糖,再加入k克糖(仍不飽和),則糖水更甜了”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在數(shù)學(xué)學(xué)習(xí)過程中,通常是利用已有的知識與經(jīng)驗(yàn),通過對研究對象進(jìn)行觀察、實(shí)驗(yàn)、推理、抽象概括,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,揭示研究對象的本質(zhì)特征.在數(shù)學(xué)課上,老師給出這樣一道題:
我們知道:2+2=2×2,3+
3
2
=3×
3
2
,4+
4
3
=4×
4
3
,…
請你根據(jù)上面的材料歸納出a、b(a>1,b>1)一個數(shù)學(xué)關(guān)系式.
我們由此得出的結(jié)論為:設(shè)其中一個數(shù)為a,另一個數(shù)為b,則b=
a
a-1
;
在數(shù)學(xué)課上小剛同學(xué)又發(fā)現(xiàn)了一個新的結(jié)論是:
a
b
+
b
a
+2=ab
;
你認(rèn)為小剛的結(jié)論正確嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣東鹽步中學(xué)八年級下學(xué)期月考數(shù)學(xué)試卷(帶解析) 題型:解答題

在數(shù)學(xué)學(xué)習(xí)過程中,通常是利用已有的知識與經(jīng)驗(yàn),通過對研究對象進(jìn)行觀察、實(shí)驗(yàn)、推理、抽象概括,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,揭示研究對象的本質(zhì)特征。
比如“同底數(shù)冪的乘法法則”的學(xué)習(xí)過程是利用有理數(shù)的乘方概念和乘法結(jié)合律,由“特殊”到“一般”進(jìn)行抽象概括的: 22×23=25,23×24=27,22×26=28,…
2m×2n=2m+n,…am×anam+n(m、n都是正整數(shù))。探索問題:
(1)比較下列各組數(shù)據(jù)的大小:
    , ②   , ③    ,  ④   ,…。
(2)請你根據(jù)上面的材料歸納出ab、c(ab>0,c>0)之間的一個數(shù)學(xué)關(guān)系式;并用已學(xué)的數(shù)學(xué)知識說明你發(fā)現(xiàn)結(jié)論的正確性.
(3)試用(2)中你歸納的數(shù)學(xué)關(guān)系式,解釋下面生活中的一個現(xiàn)象:“若m克糖水里含有n克糖,再加入k克糖(仍不飽和),則糖水更甜了”;

查看答案和解析>>

同步練習(xí)冊答案