【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D,證明:△ABD≌△ACE,DE=BD+CE;
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D, A, E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=a,其中a為任意銳角或鈍角,請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
【答案】(1)見解析;(2)成立,理由見解析;
【解析】
(1)根據(jù)BD⊥直線m,CE⊥直線m得∠BDA=∠CEA=90°,而∠BAC=90°,根據(jù)等角的余角相等得∠CAE=∠ABD,然后根據(jù)“AAS”可判斷△ADB≌△CEA,
則AE=BD,AD=CE,于是DE=AE+AD=BD+CE;
(2)利用∠BDA=∠BAC=α,則∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,進(jìn)而得出△ADB≌△CEA即可得出答案.
(1)∵BD⊥直線m,CE⊥直線m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°α,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,四邊形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,CE⊥AB于點(diǎn)E,BD⊥AC于點(diǎn)D,BD、CE相交于點(diǎn)F,連結(jié)ED.
(1)若∠ABC=45°,證明AE=EF;
(2)求證:△AED∽△ACB;
(3)過點(diǎn)A的直線AM∥ED, AM是⊙O的切線嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,分別表示小明步行與小剛騎車在同一路上行駛的路程S與時(shí)間t的關(guān)系.
(1)小剛出發(fā)時(shí)與小明相距________米.走了一段路后,自行車發(fā)生故障進(jìn)行修理,所用的時(shí)間是________分鐘.
(2)求出小明行走的路程S與時(shí)間t的函數(shù)關(guān)系式.(寫出計(jì)算過程)
(3)請(qǐng)通過計(jì)算說明:若小剛的自行車不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn),何時(shí)與小明相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)(5mn2﹣4m2n)(﹣2mn)
(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)
(3) (-)2 016×161 008;
【答案】(1)﹣10m2n3+8m3n2;(2)2x﹣40;(3)1.
【解析】試題分析:(1)原式利用單項(xiàng)式乘以多項(xiàng)式法則計(jì)算即可得到結(jié)果;
(2)原式兩項(xiàng)利用多項(xiàng)式乘以多項(xiàng)式法則計(jì)算,去括號(hào)合并即可得到結(jié)果;
(3)先根據(jù)冪的乘方的逆運(yùn)算,把(-)2 016化為()1008,再根據(jù)積的乘方的逆運(yùn)算計(jì)算即可.
試題解析:(1)原式=(5mn2)(﹣2mn)+(﹣4m2n)(﹣2mn)=﹣10m2n3+8m3n2;
(2)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.
(3)原式=()1008×161 008=(×16)1 008=1.
【題型】解答題
【結(jié)束】
19
【題目】如圖,方格圖中每個(gè)小正方形的邊長(zhǎng)為1,點(diǎn)A、B、C都是格點(diǎn).
(1)畫出△ABC關(guān)于直線BM對(duì)稱的△A1B1C1;
(2)寫出AA1的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,AD=3,折疊紙片使DA與對(duì)角線DB重合,點(diǎn)A落在點(diǎn)A′處,折痕為DE,則A′E的長(zhǎng)是( )
A. 1 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀思考:
數(shù)學(xué)課上老師出了一道分式化簡(jiǎn)求值題目.
題目: ÷(x+1)·-,其中x=-.
“勤奮”小組的楊明同學(xué)展示了他的解法:
解:原式=-.........................................................................第一步
=-..........................................................................第二步
=...........................................................................................第三步
=..................................................................................................第四步
當(dāng)x=-時(shí),原式=.................................................................第五步
請(qǐng)你認(rèn)真閱讀上述解題過程,并回答問題:
你認(rèn)為該同學(xué)的解法正確嗎?如有錯(cuò)誤,請(qǐng)指出錯(cuò)誤在第幾步,并寫出完整、正確的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩艘客輪同時(shí)離開港口,航行的速度都是40m/min,甲客輪用15min到達(dá)點(diǎn)A,乙客輪用20min到達(dá)點(diǎn)B,若A,B兩點(diǎn)的直線距離為1000m,甲客輪沿著北偏東30°的方向航行,則乙客輪的航行方向可能是( )
A. 北偏西30° B. 南偏西30° C. 南偏東60° D. 南偏西60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)是(1,2),則點(diǎn)A1,C1的坐標(biāo)分別是 ( 。
A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1) C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com