【題目】已知:如圖,直線ykx+bk,b為常數(shù))分別與x軸、y軸交于點(diǎn)A(﹣4,0),B0,3),拋物線y=﹣x2+4x+1y軸交于點(diǎn)C,點(diǎn)E在拋物線y=﹣x2+4x+1的對(duì)稱軸上移動(dòng),點(diǎn)F在直線AB上移動(dòng),CE+EF的最小值是(  )

A.2B.4C.2.5D.3

【答案】B

【解析】

設(shè)C點(diǎn)關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C′,由對(duì)稱的性質(zhì)可得CE=C′E,則可知當(dāng)F、E、C′三點(diǎn)一線且C′FAB垂直時(shí)CE+EF最小,由C點(diǎn)坐標(biāo)可確定出C′,F點(diǎn)的坐標(biāo),即可求得CE+EF的最小值.

解:如圖,設(shè)C點(diǎn)關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C′,由對(duì)稱的性質(zhì)可得CEC′E,

CE+EFC′E+EF,

∴當(dāng)F、EC′三點(diǎn)共線且C′FAB時(shí)CE+EF最小,

∵直線ykx+bkb為常數(shù))分別與x軸、y軸交于點(diǎn)A(﹣40),B03),

,

解得,

∴直線解析式為yx+3;

∵拋物線y=﹣x2+4x+1y軸交于點(diǎn)C,

C0,1),

C′4,1),

∴可設(shè)直線C′F的解析式為y=﹣x+,

,解得,

F,),

C′F4,

CE+EF的最小值為4

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AEBC,垂足為E,如果AB5,AE4BC8,有下列結(jié)論:

DE4;

SAEDS四邊形ABCD

DE平分∠ADC;

④∠AED=∠ADC

其中正確結(jié)論的序號(hào)是_____(把所有正確結(jié)論的序號(hào)都填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,DBC的中點(diǎn).

小明對(duì)圖進(jìn)行了如下探究:在線段AD上任取一點(diǎn)P,連接PB.將線段PB繞點(diǎn)P按逆時(shí)針方向旋轉(zhuǎn),點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)E,連接BE,得到.小明發(fā)現(xiàn),隨著點(diǎn)P在線段AD上位置的變化,點(diǎn)E的位置也在變化,點(diǎn)E可能在直線AD的左側(cè),也可能在直線AD上,還可能在直線AD的右側(cè).請(qǐng)你幫助小明繼續(xù)探究,并解答下列問題:

1)當(dāng)點(diǎn)E在直線AD上時(shí),如圖所示.

連接CE,直線CE與直線AB的位置關(guān)系是

2)請(qǐng)?jiān)趫D中畫出,使點(diǎn)E在直線AD的右側(cè),連接CE.試判斷直線CE與直線AB的位置關(guān)系,并說明理由.

3)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),求AE的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(,),點(diǎn)Q的坐標(biāo)為(),且,若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q相關(guān)矩形.下圖為點(diǎn)P,Q 相關(guān)矩形的示意圖.

1)已知點(diǎn)A的坐標(biāo)為(1,0).

若點(diǎn)B的坐標(biāo)為(3,1)求點(diǎn)A,B相關(guān)矩形的面積;

點(diǎn)C在直線x=3上,若點(diǎn)A,C相關(guān)矩形為正方形,求直線AC的表達(dá)式;

2O的半徑為,點(diǎn)M的坐標(biāo)為(m3).若在O上存在一點(diǎn)N,使得點(diǎn)MN相關(guān)矩形為正方形,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;

(2)在這條拋物線的對(duì)稱軸右邊的圖象上有一點(diǎn)B,使AOB的面積等于6,求點(diǎn)B的坐標(biāo);

(3)對(duì)于(2)中的點(diǎn)B,在此拋物線上是否存在點(diǎn)P,使POB=90°?若存在,求出點(diǎn)P的坐標(biāo),并求出POB的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O直徑,∠ACB的平分線交⊙OD,若ACm,BCn,則CD的長(zhǎng)為_____(用含m、n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B是⊙O上的兩點(diǎn),C是⊙O上不與A,B重合的任意一點(diǎn).如果∠AOB140°,那么∠ACB的度數(shù)為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)yk1x+b的圖象與反比例函數(shù)y的圖象交于A3,﹣2)、B(﹣2,n)兩點(diǎn),與x軸交于點(diǎn)C

1)求k2,n的值;

2)請(qǐng)直接寫出不等式k1x+b的解集;

3)將x軸下方的圖象沿x軸翻折,點(diǎn)A落在點(diǎn)A處,連接A'B、A'C,求A'BC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y,y=﹣2018x2+2019y2018x2共有的性質(zhì)是( 。

A.開口向上

B.對(duì)稱軸是y

C.當(dāng)x0時(shí),yx的增大而增大

D.都有最低點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案