【題目】如圖(1)所示,E是矩形ABCD的邊AD上一邊,動點PQ同時從點B出發(fā),點P沿折線運動到點C時停止,點Q沿BC運動到點C時停止,它們運動的速度都是1cm/秒,設(shè)P,Q同時出發(fā)t秒后時,的面積為,已知的函數(shù)關(guān)系圖像如圖(2)(曲線OM為拋物線的一部分),則當t的值是___________時,面積為4

【答案】

【解析】

由兩個圖形可知,ABBC,BE的長,然后分點PBE上,點PCD上兩種情況進行討論,表示出△BPQ的面積,由面積為4,建立關(guān)于t的等式求解即可.

由圖像可知,

AB=4,BE=BC=5

①當點PBE上,如圖(1)

RtABE中,AB=4,BE=5

sinAEB=

sinCBE=,

BP=t,

PG=BPsinCBE=t,

,

(舍)或,

②當點PCD上時,

,

,

∴當BPQ的面積為4cm2時,t的值是秒,

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為20cm,∠ABC120°.動點P、Q同時從點A出發(fā),其中P4cm/s的速度,沿ABC的路線向點C運動;Q先以2cm/s的速度沿AO的路線向點O運動,然后再以2cm/s的速度沿OD的路線向點D運動,當PQ到達終點時,整個運動隨之結(jié)束,設(shè)運動時間為t秒.

1)在點PAB上運動時,判斷PQ與對角線AC的位置關(guān)系,并說明理由;

2)若點Q關(guān)于菱形ABCD的對角線交點O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N

①直接寫出當PQM是直角三角形時t的取值范圍;

②是否存在這樣的t,使PMN是以PN為一直角邊的直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某便利店的咖啡單價為10/杯,為了吸引顧客,該店共推出了三種會員卡,如下表:

會員卡類型

辦卡費用/

有效期

優(yōu)惠方式

A

40

1

每杯打九折

B

80

1

每杯打八折

C

130

1

一次性購買2杯,第二杯半價

例如,購買A類會員卡,1年內(nèi)購買50次咖啡,每次購買2杯,則消費元.若小玲1年內(nèi)在該便利店購買咖啡的次數(shù)介于75~85次之間,且每次購買2杯,則最省錢的方式為(

A.購買A類會員卡B.購買B類會員卡

C.購買C類會員卡D.不購買會員卡

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.

(1)求二次函數(shù)y=ax2+bx+c的表達式;

(2)過點AAC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點PAC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積;

(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,且AE為其一邊,求點M、N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD內(nèi)的一點,連接CP,將線段CP繞點C順時針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ

(1)、如圖a,求證:△BCP≌△DCQ

(2)、如圖,延長BP交直線DQ于點E

如圖b,求證:BE⊥DQ

如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】高科技發(fā)展公司投資500萬元,成功研制出一種市場需求量較大的高科技替代產(chǎn)品,并投入資金1500萬元作為固定投資,已知生產(chǎn)每件產(chǎn)品的成本是40元.在銷售過程中發(fā)現(xiàn):當銷售單價定為100元時,年銷售量為20萬件;銷售單價每增加10元,年銷售量將減少1萬件,設(shè)銷售單價為x(元),年銷售量為y(萬件),年獲利(年獲利=年銷售額一生產(chǎn)成本投資)為z(萬元).

(1)試寫出y與x之間的函數(shù)關(guān)系式(不寫x的取值范圍);

(2)試寫出z與x之間的函數(shù)關(guān)系式(不寫x的取值范圍);

3)公司計劃,在第一年按年獲利最大確定銷售單價進行銷售;到第二年年底獲利不低于1130萬元,請借助函數(shù)的大致圖象說明:第二年的銷售單價x(元)應(yīng)確定在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象過點(4,-5)和(0,3),且與x軸交于點M(-10)和N,

1)求此二次函數(shù)的解析式;

2)如果這二次函數(shù)的圖像的頂點為點P,點O是坐標原點,求△OPN的面積.

3)如果點R與點P關(guān)于x軸對稱,判定以M、N、PR為頂點的四邊形的邊之間的位置與度量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,將矩形繞點按順時針方向旋轉(zhuǎn)得到矩形,點落在矩形的邊上的點處,連接,則點的距離是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,大海中某燈塔P周圍10海里范圍內(nèi)有暗礁,一艘海輪在點A處觀察燈塔P在北偏東60°方向,該海輪向正東方向航行8海里到達點B處,這時觀察燈塔P恰好在北偏東45°方向.如果海輪繼續(xù)向正東方向航行,會有觸礁的危險嗎?試說明理由.(參考數(shù)據(jù):≈1.73

查看答案和解析>>

同步練習冊答案