如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,連接CE交AD于點F,連接BD交CE于點G,連接BE.下列結論中:
①CE=BD;
②△ADC是等腰直角三角形;
③∠ADB=∠AEB;
④CD•AE=EF•CG;
一定正確的結論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
D 解:①∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即:∠BAD=∠CAE,
∵△ABC和△ADE都是等腰直角三角形,
∴AB=AC,AE=AD,
∴△BAD≌△CAE(SAS),
∴CE=BD,
∴故①正確;
②∵四邊形ACDE是平行四邊形,
∴∠EAD=∠ADC=90°,AE=CD,
∵△ADE是等腰直角三角形,
∴AE=AD,
∴AD=CD,
∴△ADC是等腰直角三角形,
∴②正確;
③∵△ADC是等腰直角三角形,
∴∠CAD=45°,
∴∠BAD=90°+45°=135°,
∵∠EAD=∠BAC=90°,∠CAD=45°,
∴∠BAE=360°﹣90°﹣90°﹣45°=135°,
又AB=AB,AD=AE,
∴△BAE≌△BAD(SAS),
∴∠ADB=∠AEB;
故③正確;
④∵△BAD≌△CAE,△BAE≌△BAD,
∴△CAE≌△BAE,
∴∠BEA=∠CEA=∠BDA,
∵∠AEF+∠AFE=90°,
∴∠AFE+∠BEA=90°,
∵∠GFD=∠AFE,∠ADB=∠AEB,
∴∠ADB+∠GFD=90°,
∴∠CGD=90°,
∵∠FAE=90°,∠GCD=∠AEF,
∴△CGD∽△EAF,
∴,
∴CD•AE=EF•CG.
故④正確,
故正確的有4個.
故選:D.
科目:初中數(shù)學 來源: 題型:
一個不透明的袋中裝有除顏色外都相同的球,其中紅球13個,白球7個、黑球10個.
(1)求從袋中摸一個球是白球的概率;
(2)現(xiàn)從袋中取出若干個紅球,放入相同數(shù)量的黑球,使從袋中摸出一個球是黑球的概率不超過40%,問至多取出多少個紅球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
小星同學在“百度”搜索引擎中輸入“中國夢,我的夢”,能搜索到與之相關的結果的條數(shù)約為61700000,這個數(shù)用科學記數(shù)法表示為( 。
A. 617×105 B. 6.17×106 C. 6.17×107 D. 0.617×108
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知AB∥CD,AD平分∠BAE,∠D=38°,則∠AEC的度數(shù)是( )
A. 19° B. 38° C. 72° D. 76°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
圖①所示的正方體木塊棱長為6cm,沿其相鄰三個面的對角線(圖中虛線)剪掉一角,得到如圖②的幾何體,一只螞蟻沿著圖②的幾何體表面從頂點A爬行到頂點B的最短距離為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知:如圖,∠PAQ=30°,在邊AP上順次截取AB=3cm,BC=10cm,以BC為直徑作⊙O交射線AQ于E、F兩點,求:
(1)圓心O到AQ的距離;
(2)線段EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
在一個不透明的盒子中裝有12個白球,若干個黃球,它們除顏色不同外,其余均相同.若從中隨機摸出一個球是白球的概率是,則黃球的個數(shù)為( )
A. 18 B. 20 C. 24 D. 28
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com