【題目】下列結論:①平面內3條直線兩兩相交,共有3個交點;②在平面內,若∠AOB =40°,∠AOC= ∠BOC,則∠AOC的度數為20°;③若線段AB=3, BC=2,則線段AC的長為1或5;④若∠a+∠β=180°,且∠a<∠β,則∠a的余角為(∠β-∠a).其中正確結論的個數( )
A.1個B.2個C.3個D.4個
科目:初中數學 來源: 題型:
【題目】先閱讀下列的解題過程,然后回答下列問題.
例:解絕對值方程:.
解:討論:①當時,原方程可化為,它的解是;
②當時,原方程可化為,它的解是.
原方程的解為或.
(1)依例題的解法,方程算的解是_______;
(2)嘗試解絕對值方程:;
(3)在理解絕對值方程解法的基礎上,解方程:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,∠BOE=90°,OM平分∠AOD,ON平分∠DOE.
(1)若∠MOE=27°,求∠AOC的度數;
(2)當∠BOD=x°(0<x<90)時,求∠MON的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,下列4×4網格圖都是由16個相同小正方形組成,每個網格圖中有4個小正方形已涂上陰影,請在空白小正方形中,按下列要求涂上陰影.
(1)在圖1中選取2個空白小正方形涂上陰影,使6個陰影小正方形組成一個中心對稱圖形;
(2)在圖2中選取2個空白小正方形涂上陰影,使6個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】參照學習函數的過程與方法,探完函數y=(x≠0)的圖象與性質,因為y==1﹣,即y=﹣+1,所以我們對比函數y=﹣來探究.
操作:面出函數y=(x≠0)的圖象.
列表:
X | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | ﹣ | 1 | 2 | 3 | 4 | … | |
y=﹣ | … | 1 | 2 | 4 | ﹣4 | ﹣2 | ﹣1 | ﹣ | ﹣ | … | ||
y= | … |
| 2 | 3 | 5 | ﹣3 | ﹣1 | 0 | … |
描點:在平面直角坐標中,以自變量x的取值為橫坐標,以y=相應的函數值為縱坐標,描出如圖所示相應的點;
連線:請把y軸左邊和右邊各點,分別用一條光滑曲線順次連接起來.
觀察:由圖象可知:
①當x>0時,y隨x的增大而 (填“增大”或“減小”)
②y=的圖象可以由y=﹣的圖象向 平移 個單位長度得到.
③y的取值范圍是 .
探究:①A(m1,n1),B(m2,n2)在函數y=圖象上,且n1+n2=2,求m1+m2的值;
②若直線l對應的函數關系式為y1=kx+b,且經過點(﹣1,3)和點(1,﹣1),y2=,若y1>y2,則x的取值范圍為 .
延伸:函數y=的圖象可以由反比例函數y= 的圖象向 平移 個單位,再向 平移 個單位得到.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,DC⊥BC,將梯形沿對角線BD折疊,點A恰好落在DC邊上的點A′處,若∠A′BC=20°,則∠A′BD的度數為_____°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現測得AC、BC與AB的夾角分別為45°與68°,若點C到地面的距離CD為28cm,坐墊中軸E處與點B的距離BE為4cm,求點E到地面的距離(結果保留一位小數).(參考數據:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經過點A的直線y=﹣x+b與拋物線的另一個交點為D.
(1)若點D的橫坐標為2,求拋物線的函數解析式;
(2)若在第三象限內的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是直線上的一點,射線,分別平分和.
(1)與相等的角有_____________;
(2)與互余的角有______________;
(3)已知,求的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com