如圖,在平面直角坐標(biāo)系中,直線y=-3x-3與x軸交于點A,與y軸交于點C.拋物線y=x2+bx+c經(jīng)過A,C兩點,且與x軸交于另一點B(點B在點A右側(cè)).
(1)求拋物線的解析式及點B坐標(biāo);
(2)若點M是線段BC上一動點,過點M的直線EF平行y軸交x軸于點F,交拋物線于點E.求ME長的最大值;
(3)試探究當(dāng)ME取最大值時,在拋物線x軸下方是否存在點P,使以M,F(xiàn),B,P為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標(biāo);若不存在,試說明理由.

【答案】分析:(1)先根據(jù)直線的解析式求出A、C兩點的坐標(biāo),然后將A、C的坐標(biāo)代入拋物線中即可求出二次函數(shù)的解析式.進(jìn)而可根據(jù)拋物線的解析式求出B點的坐標(biāo).
(2)ME的長實際是直線BC的函數(shù)值與拋物線的函數(shù)值的差,據(jù)此可得出一個關(guān)于ME的長和F點橫坐標(biāo)的函數(shù)關(guān)系式,可根據(jù)函數(shù)的性質(zhì)來求出ME的最大值.
(3)根據(jù)(2)的結(jié)果可確定出F,M的坐標(biāo),要使以M,F(xiàn),B,P為頂點的四邊形是平行四邊形,必須滿足的條件是MP∥=BF,那么只需將M點的坐標(biāo)向左或向右平移BF長個單位即可得出P點的坐標(biāo),然后將得出的P點坐標(biāo)代入拋物線的解析式中,即可判斷出是否存在符合條件的P點.
解答:解:(1)當(dāng)y=0時,-3x-3=0,x=-1
∴A(-1,0)
當(dāng)x=0時,y=-3,
∴C(0,-3),

,
拋物線的解析式是:y=x2-2x-3.
當(dāng)y=0時,x2-2x-3=0,
解得:x1=-1,x2=3
∴B(3,0).

(2)由(1)知B(3,0),C(0,-3)直線BC的解析式是:y=x-3,
設(shè)M(x,x-3)(0≤x≤3),則E(x,x2-2x-3)
∴ME=(x-3)-(x2-2x-3)=-x2+3x=-(x-2+;
∴當(dāng)x=時,ME的最大值為

(3)答:不存在.
由(2)知ME取最大值時ME=,E(,-),M(,-
∴MF=,BF=OB-OF=
設(shè)在拋物線x軸下方存在點P,使以P、M、F、B為頂點的四邊形是平行四邊形,
則BP∥MF,BF∥PM.
∴P1(0,-)或P2(3,-
當(dāng)P1(0,-)時,由(1)知y=x2-2x-3=-3≠-
∴P1不在拋物線上.
當(dāng)P2(3,-)時,由(1)知y=x2-2x-3=0≠-
∴P2不在拋物線上.
綜上所述:拋物線x軸下方不存在點P,使以P、M、F、B為頂點的四邊形是平行四邊形.
點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、平行四邊形的判定和性質(zhì)等知識點,綜合性強,考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.(2)中弄清線段ME長度的函數(shù)意義是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案