【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測(cè)試的成績(jī).測(cè)試規(guī)則為連續(xù)接球10個(gè)每墊球到位1個(gè)記1

(1)寫出運(yùn)動(dòng)員甲測(cè)試成績(jī)的眾數(shù)為_________;運(yùn)動(dòng)員乙測(cè)試成績(jī)的中位數(shù)為_________;運(yùn)動(dòng)員丙測(cè)試成績(jī)的平均數(shù)為_________;

(2)經(jīng)計(jì)算三人成績(jī)的方差分別為S2=0.8、S2=0.4、S2=0.8,請(qǐng)綜合分析,在他們?nèi)酥羞x擇一位墊球成績(jī)優(yōu)秀且較為穩(wěn)定的接球能手作為自由人你認(rèn)為選誰更合適?為什么?

(3)甲、乙、丙三人相互之間進(jìn)行墊球練習(xí)每個(gè)人的球都等可能的傳給其他兩人,球最先從甲手中傳出第三輪結(jié)束時(shí)球回到甲手中的概率是多少?(用樹狀圖或列表法解答

【答案】(1)7分;7分;6.3分;(2)選乙運(yùn)動(dòng)員更合適;(3)

【解析】試題分析:(1)觀察表格可知甲運(yùn)動(dòng)員測(cè)試成績(jī)的眾數(shù), 觀察折線統(tǒng)計(jì)圖可知乙運(yùn)動(dòng)員測(cè)試成績(jī)的中位數(shù),(分);

2)易知(分)(分),(分)根據(jù)題意不難判斷;

3)畫出樹狀圖即可解決問題;

試題解析:(1)觀察表格可知甲運(yùn)動(dòng)員測(cè)試成績(jī)的眾數(shù)是7觀察折線統(tǒng)計(jì)圖可知乙運(yùn)動(dòng)員測(cè)試成績(jī)的中位數(shù)是7,==6.3(分);

2(分),(分),(分),

∴選乙運(yùn)動(dòng)員更合適.

3)樹狀圖如圖所示,

第三輪結(jié)束時(shí)球回到甲手中的概率是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)用來盛爆米花的圓錐形紙杯,紙杯開口的直徑 EF 長(zhǎng)為10cm,母線OE(OF)長(zhǎng)為10cm,在母線OF 上的點(diǎn)A 處有一塊爆米花殘?jiān)?/span>FA2cm,一只螞蟻從杯口的點(diǎn)E 處沿圓錐表面爬行到A 點(diǎn),則此螞蟻爬行的最短距離為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=x+b的圖象交于點(diǎn)A(1,4),點(diǎn)B(m,-1),

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出不等式x+b>的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,解答問題:如果一個(gè)四位自然數(shù),十位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的差,個(gè)位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的和,則我們稱這個(gè)四位數(shù)依賴數(shù),例如,自然數(shù)2135,其中32×2152×2+1,所以2135依賴數(shù)

1)請(qǐng)直接寫出最小的四位依賴數(shù);

2)若四位依賴數(shù)的后三位表示的數(shù)減去百位數(shù)字的3倍得到的結(jié)果除以73,這樣的數(shù)叫做特色數(shù),求所有特色數(shù).

3)已知一個(gè)大于1的正整數(shù)m可以分解成mpq+n4的形式(p≤q,n≤b,pq,n均為正整數(shù)),在m的所有表示結(jié)果中,當(dāng)nqnp取得最小時(shí),稱“mpq+n4m最小分解,此時(shí)規(guī)定:Fm)=,例:201×4+242×2+241×19+14,因?yàn)?/span>1×191×12×42×12×22×2,所以F20)=1,求所有特色數(shù)Fm)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于點(diǎn)A(1,0)和B(4,0)

(1)求拋物線的解析式;

(2)若拋物線的對(duì)稱軸交x軸于點(diǎn)E,點(diǎn)F是位于x軸上方對(duì)稱軸上一點(diǎn),F(xiàn)Cx軸,與對(duì)稱軸右側(cè)的拋物線交于點(diǎn)C,且四邊形OECF是平行四邊形,求點(diǎn)C的坐標(biāo);

(3)在(2)的條件下,拋物線的對(duì)稱軸上是否存在點(diǎn)P,使OCP是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育用品商店試銷一款成本為 50 元的排球,規(guī)定試銷期間單價(jià)不低于成本價(jià),且獲利不得高于 40%。經(jīng)試銷發(fā)現(xiàn),銷售量 (個(gè))與銷售單價(jià) (元)之間滿足如圖所示的一次函數(shù)關(guān)系.

1)試確定 之間的函數(shù)關(guān)系式;

2)若該體育用品商店試銷的這款排球所獲得的利潤(rùn)為 元,試寫出利潤(rùn) (元)與銷售單價(jià) (元)之間的函數(shù)關(guān)系式;當(dāng)試銷單價(jià)定為多少元時(shí),該商店可獲最大利潤(rùn)?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)分別是上的中點(diǎn),連接并延長(zhǎng)至點(diǎn),使,連接.

(1)證明:;

(2)若AC=2,連接BF,求BF的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為﹣7,點(diǎn)B表示的數(shù)為5,點(diǎn)C到點(diǎn)A,點(diǎn)B的距離相等,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為tt>0)秒.

(1)點(diǎn)C表示的數(shù)是   ;

(2)求當(dāng)t等于多少秒時(shí),點(diǎn)P到達(dá)點(diǎn)B處;

(3)點(diǎn)P表示的數(shù)是   (用含有t的代數(shù)式表示);

(4)求當(dāng)t等于多少秒時(shí),PC之間的距離為2個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計(jì),全球每分鐘約有8400000噸垃圾產(chǎn)生,則每秒鐘的產(chǎn)生的垃圾用科學(xué)記數(shù)法表示應(yīng)是___.

查看答案和解析>>

同步練習(xí)冊(cè)答案