【題目】(本題8分)下列3×3網(wǎng)格都是由9個相同小正方形組成,每個網(wǎng)格圖中有3個小正方形已涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:

(1)選取1個涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形;

(2)選取1個涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形;

(3)選取2個涂上陰影,使5個陰影小正方形組成一個軸對稱圖形。

(請將三個小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)

【答案】詳見解析.

【解析】

試題分析:(1)根據(jù)軸對稱圖形的定義作圖即可;(2)根據(jù)中心對稱圖形的定義作圖即可;(3)根據(jù)軸對稱圖形的定義作圖即可;

試題解析:

(1)畫出下列一種即可:

(2)畫出下列一種即可:

;

(3)畫出下列一種即可:

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知∠A=70°30′,求A的余角和補角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,RtABC的三個頂點分別是A(﹣8,3),B(﹣4,0),C(﹣4,3),ABC=α°.拋物線經(jīng)過點C,且對稱軸為x=,并與y軸交于點G.

(1)求拋物線的解析式及點G的坐標;

(2)將RtABC沿x軸向右平移m個單位,使B點移到點E,然后將三角形繞點E順時針旋轉(zhuǎn)α°得到DEF.若點F恰好落在拋物線上.

①求m的值;

②連接CG交x軸于點H,連接FG,過B作BPFG,交CG于點P,求證:PH=GH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,∠ACB=90°,點D,E分別為AC,AB的中點,點F在BC的延長線上,且∠CDF=∠A.求證:四邊形DECF為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的等邊△ABC中,D為BC的中點,E是AC邊上一點,則BE+DE的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算中正確的是( 。

A. b3b3=2b3 B. x2x3=x6 C. (a52=a7 D. a5÷a2=a3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點E在BC上,CD⊥AB,EF⊥AB,垂足分別為D、F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列條件中,①∠A+∠B=∠C; ②∠A:∠B:∠C=1:2:3; ③∠A= ∠B= ∠C; ④∠A=∠B=2∠C; ⑤∠A=2∠B=3∠C,能確定△ABC為直角三角形的條件有( )
A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題。
(1)如圖①,△ABC中,點D、E在邊BC上,AE平分∠BAC,AD⊥BC,∠C=40°,∠B=60°,求:①∠CAE的度數(shù);②∠DAE的度數(shù).
(2)如圖②,若把(1)中的條件“AD⊥BC”變成“F為AE延長線上一點,且FD⊥BC”,其他條件不變,求出∠DFE的度數(shù).
(3)在△ABC中,AE平分∠BAC,若F為EA延長線上一點,F(xiàn)D⊥BC,且∠C=α,∠B=β(β>α),試猜想∠DFE的度數(shù)(用α,β表示),請自己作出對應圖形并說明理由.

查看答案和解析>>

同步練習冊答案