【題目】如圖,以G(0,3)為圓心,半徑為6的圓與x軸交于A.B兩點,與y軸交于C,D兩點,點E為⊙G上一動點,CF⊥AE于F,點E在⊙G的運動過程中,線段FG的長度的最小值為( )
A.1B.2-2C.3D.33
【答案】D
【解析】
如圖,連接AC,作GM⊥AC,連接AG,由CF⊥AE于F可知,點F在以AC為直徑的圓M上移動,當點F在MG的延長線上時,FG的長最小,根據(jù)含30°直角三角形的性質以及勾股定理求出MF,MG即可解答.
解:如圖,連接AC,作GM⊥AC,連接AG,
∵GO⊥AB,
∴OA=OB
在Rt△AGO中,AG=6,OG=3,
∴AG=2OG,OA=,
∴∠GAO=30°,∠AGO=60°,
∵GC=GA=6,
∴∠ACG=∠CAG,
∵∠AGO=∠ACG+∠CAG,
∴∠ACG=∠CAG=30°,
∴AC=2AO=6,MG=,
∴AM=3,
∵CF⊥AE于F,
∴點F在以AC為直徑的圓M上移動,
當點F在MG的延長線上時,FG的長最小,最小值為FM-MG=3-3,
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】 問題發(fā)現(xiàn):如圖(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE繞點B逆時針旋轉,H為CD的中點,當點C與點E重臺時,BH與AE的位置關系為______,BH與AE的數(shù)量關系為______;
問題證明:在Rt△BDE繞點B旋轉的過程中,(1)中的結論是否仍然成立?若成立,請就圖(2)的情形給出證明若不成立,請說明理由;
拓展應用:在Rt△BDE繞點B旋轉的過程中,當DE∥BC時,請直接寫出BH2的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=45°,AD⊥BC于點D,BD=6,DC=4,求AD的長.小明同學利用翻折,巧妙地解答了此題,按小明的思路探究并解答下列問題:
(1)分別以AB,AC所在直線為對稱軸,畫出△ABD和△ACD的對稱圖形,點D的對稱點分別為點E,F,延長EB和FC相交于點G,求證:四邊形AEGF是正方形;
(2)設AD=x,建立關于x的方程模型,求出AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】網(wǎng)絡銷售是一種重要的銷售方式.某農貿公司新開設了一家網(wǎng)店,銷售當?shù)剞r產品.其中一種當?shù)靥禺a在網(wǎng)上試銷售,其成本為每千克2元.公司在試銷售期間,調查發(fā)現(xiàn),每天銷售量與銷售單價(元)滿足如圖所示的函數(shù)關系(其中).
(1)若,求與之間的函數(shù)關系式;
(2)銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了節(jié)省材料,某農戶利用一段墻體為一邊(墻體的長為10米),用總長為40m的圍網(wǎng)圍成如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等.
(1)求AE:EB的值;
(2)當BE的長為何值時,長方形ABCD的面積達到72m2?
(3)當BE的長為何值時,矩形區(qū)域①的面積達到最大值?并求出其最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F,連接CF.
(1)求證:AF=BD.
(2)求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有A、B兩組卡片共5張,A組的三張分別寫有數(shù)字2,4,6,B組的兩張分別寫有3,5.它們除了數(shù)字外沒有任何區(qū)別,
(1)隨機從A組抽取一張,求抽到數(shù)字為2的概率;
(2)隨機地分別從A組、B組各抽取一張,請你用列表或畫樹狀圖的方法表示所有等可能的結果.現(xiàn)制定這樣一個游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為調查本校學生對“關燈一小時”有關情況的了解程度.學校政教處隨機抽取部分同學進行了調查,將調查結果分為:“A—不太了解、B—基本了解、C—了解較多、D—非常了解”四個等級,依據(jù)相關數(shù)據(jù)繪制成如下兩幅統(tǒng)計圖.
(1)這次調查抽取了多少名學生?
(2)根據(jù)兩個統(tǒng)計圖提供的信息,補全這兩個統(tǒng)計圖;
(3)若該校有 3000 名學生,請你估計全校對“關燈一小時”非常了解的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為進一步改善路容路貌,提升干線公路美化度,某地相關部門初步擬定派一個工程隊對一段長度不少于39000米的公路進行路基標準化整修.該工程隊以舊設備與新設備交替使用的方式施工,原計劃舊設備每小時整修公路30米,新設備每小時整修公路60米
(1)出于保護舊設備的目的,該工程隊計劃使用新設備的時間比使用舊設備的時間多,當這個工程完工時,舊設備的使用時間至少為多少小時?
(2)通過精確的勘察、測測量、規(guī)劃,以及新增了部分支線公路整修,此工程的實際施工里程比最初擬定的最少里程39000米多了9000米,于是在實際施工中,舊設備在整修公路效率不變的情況下,使用時間比(1)中的最小值多,同時,因為工人操作新設備不夠熟練,使得得新設備整修公路的效率比原計劃下降了,使用時間比(1)中新設備使用的最短時間多,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com