精英家教網(wǎng)如圖,已知△ADE∽△ABC,且AD=3,AB=5,CE=3,則AC的長為
 
分析:根據(jù)已知得到△ADE∽△ABC,根據(jù)相似比從而可求得AC的長.
解答:解:設(shè)AC=x
∵△ADE∽△ABC
AD
AB
=
x-3
x
,∴
3
5
=
x-3
x

∴x=7.5
∴AC=7.5.
點評:此題考查了相似三角形的性質(zhì),相似三角形的對應(yīng)角相等,對應(yīng)邊的比相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,已知△ADE∽△ACB,且∠ADE=∠C,則AD:AC=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、填注理由:
如圖,已知∠ADE=∠B,F(xiàn)G⊥AB,∠EDC=∠GFB,求證:CD⊥AB
證明:因為∠ADE=∠B(已知)
所以DE∥BC(
同位角相等,兩直線平行

所以∠EDC=∠DCB(
兩直線平行,內(nèi)錯角相等

因為∠EDC=∠GFB(已知)
所以∠DCB=∠GFB(
等量代換

所以FG∥CD(
同位角相等,兩直線平行

所以∠BGF=∠BDC(
兩直線平行,同位角相等

因為FG⊥AB(已知)
所以∠BGF=90°(
垂直的定義

所以∠BDC=90°(
等量代換

即CD⊥AB(
垂直的定義

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ADE∽△ABC,且∠AED=∠C,AD=2,AB=4,DE=1.8,求BC的長及AE:AC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ADE∽△ABC,相似比為2:3,則BC:DE的值為
3:2
3:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,則BE=
8.5
8.5

查看答案和解析>>

同步練習(xí)冊答案