【題目】如圖,已知,,,,和交于點(diǎn),則下列結(jié)論:①;②;③平分;④.其中正確的有____.
【答案】①②③④
【解析】
如圖先證明△ABE≌△AFC,得到BE=CF,利用“8字型”證明∠CON=∠CAE=60°,從而得到∠BOC=180°-∠CON=120°;連接AO,過A分別作AP⊥CF與P,AM⊥BE于Q ,通過S△ABE=S△AFC,得到AP=AQ,利用角平分線的判定定理得AO平分∠EOF,在OE上截取OD=OA,連接AD,證明△AFO≌△BAD,再由此可以解決問題.
解:由題意可知AB=AF,AC=AE,∠FAB=∠EAC=60°,
∴∠FAB+∠BAC=∠EAC+∠BAC,
即∠FAC=∠BAE,
在△ABE與△AFC中, ,
∴△ABE≌△AFC(SAS),
∴BE=FC,故①正確,∠AEB=∠ACF,
∵∠EAN+∠ANE+∠AEB=180°,∠CON+∠CNO+∠ACF=180°,∠ANE=∠CNO
∴∠CON=∠CAE=60°
∴∠BOC=180°-∠CON=120°,故②正確,
連接AO,過A分別作AP⊥CF與P,AM⊥BE于Q,如圖,
∵△ABE≌△AFC,
∴S△ABE=S△AFC,
∴CFAP=BEAQ,而CF=BE,
∴AP=AQ,
∴OA平分∠FOE,所以③正確,
在OE上截取OD=OA,連接AD
∵∠BOC=120°,AO平分∠FOE
∴∠AOD=60°
又∵OD=OA
∴△AOD為等邊三角形
∴AD=AO;∠OAD=∠FAB=60°
∴∠OAD+∠BAO=∠FAB+∠BAO
∴∠FAO=∠BAD
又∵FA=AB
∴△AFO≌△BAD
∴OF=BD=BO+OD=BO+AO,④正確
故答案為:①②③④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)(﹣1,﹣2),點(diǎn)A是該圖象第一象限分支上的動點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為斜邊作等腰直角三角形ABC,頂點(diǎn)C在第四象限,AC與x軸交于點(diǎn)D,當(dāng)時,則點(diǎn)C的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(3,),點(diǎn)B的坐標(biāo)為(6,0),將△AOB繞點(diǎn)B按順時針方向旋轉(zhuǎn)一定的角度后得到△A′O′B,點(diǎn)A的對應(yīng)點(diǎn)A′在x軸上,則點(diǎn)O′的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,∠A=36°.
(1)尺規(guī)作圖:作AB的垂直平分線MN交AC于點(diǎn)D,連接BD;(保留作圖痕跡,不寫作法)
(2)求∠DBC的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線M:y=ax2+bx+c(a≠0)經(jīng)過A(﹣1,0),且頂點(diǎn)坐標(biāo)為B(0,1).
(1)求拋物線M的函數(shù)表達(dá)式;
(2)設(shè)F(t,0)為x軸正半軸上一點(diǎn),將拋物線M繞點(diǎn)F旋轉(zhuǎn)180°得到拋物線M1.
①拋物線M1的頂點(diǎn)B1的坐標(biāo)為 ;
②當(dāng)拋物線M1與線段AB有公共點(diǎn)時,結(jié)合函數(shù)的圖象,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O′在第一象限,⊙O′與x軸相切于H點(diǎn),與y軸相交于A(0,2),B(0,8),則點(diǎn)O′的坐標(biāo)是( )
A. (6,4) B. (4,6) C. (5,4) D. (4,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形OBCD的OB邊在x軸上,OD在y軸上,把OBC沿OC折疊得到OCE,OE與CD交于點(diǎn)F.
(1)求證:OF=CF;
(2)若OD=4,OB=8,寫出OE所在直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.下面我們依次對展開式的各項(xiàng)系數(shù)進(jìn)一步研究發(fā)現(xiàn),當(dāng)取正整數(shù)時可以單獨(dú)列成表中的形式:
例如,在三角形中第二行的三個數(shù)1,2,1,恰好對應(yīng)展開式中的系數(shù),
(1)根據(jù)表中規(guī)律,寫出的展開式;
(2)多項(xiàng)式的展開式是一個幾次幾項(xiàng)式?并預(yù)測第三項(xiàng)的系數(shù);
(3)請你猜想多項(xiàng)式取正整數(shù))的展開式的各項(xiàng)系數(shù)之和(結(jié)果用含字母的代數(shù)式表示);
(4)利用表中規(guī)律計(jì)算:(不用表中規(guī)律計(jì)算不給分).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小林在某商店購買商品A、B共三次,只有一次購買時,商品A、B同時打折(折扣相同),其余兩次均按標(biāo)價(jià)購買.三次購買商品A、B的數(shù)量和費(fèi)用如下表:
購買商品A的數(shù)量/個 | 購買商品B的數(shù)量/個 | 購買總費(fèi)用/元 | |
第一次購物 | 6 | 5 | 1140 |
第二次購物 | 3 | 7 | 1110 |
第三次購物 | 9 | 8 | 1062 |
(1)小林以折扣價(jià)購買商品A、B是第 次購物;
(2)求出商品A、B的標(biāo)價(jià);
(3)若商品A、B的折扣相同,問商店是打幾折出售這兩種商品的?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com