【題目】如圖所示,ABO的直徑,CD為弦,且CDAB,垂足為H

1如果O的半徑為4,CD=,求BAC的度數(shù);

2)若點E為弧ADB的中點,連接OE,CE.求證:CE平分OCD

【答案】130°;(2答案見解析

【解析】試題分析:1)先求出CH的長,利用三角形的角邊關系求出∠COH,然后就可求出∠BAC;

2)利用等腰三角形的性質得出∠E=OCE,再利用平行線的判定得出OECD即可證明CE平分∠OCD.

試題解析:(1AB為⊙O的直徑,CDAB,

CH=CD=,

RtCOH中,OH=,

,

∴∠COH=60°,

OA=OC,弧BC=BC,

∴∠BAC=COH=30°

2∵點E是弧ADB的中點,

OEAB,

OECD

∴∠ECD=OEC,

又∵∠OEC=OCE,

∴∠OCE=DCE

CE平分∠OCD.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將一副直角三角板放在同一條直線AB上,其中∠ONM30°,∠OCD45°

1)觀察猜想

將圖1中的三角尺OCD沿AB的方向平移至圖②的位置,使得點O與點N重合,CDMN相交于點E,則∠CEN  度.

2)操作探究

將圖1中的三角尺OCD繞點O按順時針方向旋轉,使一邊OD在∠MON的內(nèi)部,如圖3,且OD恰好平分∠MON,CDNM相交于點E,求∠CEN的度數(shù);

3)深化拓展

將圖1中的三角尺OCD繞點O按沿順時針方向旋轉一周,在旋轉的過程中,若邊CD恰好與邊MN平行,請你求出此時旋轉的角度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)設計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本

1求每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關系式;

2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為提高節(jié)水意識,小明隨機統(tǒng)計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進行整理后,繪制成如圖所示的統(tǒng)計圖.(單位:升)

每天用水折線統(tǒng)計圖 3天用水情況條形統(tǒng)計圖

1)填空:這7天內(nèi)小明家里每天用水量的平均數(shù)為 升、中位數(shù)為 升;

2)求第3天小明家淋浴的水占這一天總用水量的百分比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰直角ABC,ABC=90°,PACABP繞頂點B沿順時針方向旋轉90°后得到CBQ.

(1)求∠PCQ的度數(shù);

(2)AB=4APBP=13,PQ的長;

(3)當點P在線段AC上運動時(P不與A、C重合),請寫出一個反映PA2PC2、PB2之間關系的等式并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是坐標原點,菱形OABC的頂點A的坐標為,頂點Cx軸的正半軸上,則的角平分線所在直線的函數(shù)關系式為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC的三個頂點坐標為A(﹣2,3),B(﹣60),C(﹣10).

1)將ABC繞坐標原點O旋轉180°,畫出圖形,并寫出點A的對應點A′的坐標_____;

2)將ABC繞坐標原點O逆時針旋轉90°,直接寫出點A的對應點A″的坐標_____

3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D所有可能的坐標_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線交X軸于點A、B(A左B右),交Y軸于點C,

=6,點P為第一象限內(nèi)拋物線上的一點.

(1)求拋物線的解析式;

(2)若∠PCB=45°,求點P的坐標;

(3)點Q為第四象限內(nèi)拋物線上一點,點Q的橫坐標比點P的橫坐標大1,連接PC、

AQ,當PC=AQ時,求點P的坐標以及ΔPCQ的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,以點P為圓心的圓弧與x軸交于A、B兩點,已知P4,2)和A2,0),則點B的坐標是_____

查看答案和解析>>

同步練習冊答案