【題目】小慧和小聰沿圖1中的景區(qū)公路游覽.小慧乘坐車速為30km/h的電動汽車,早上7:00從賓館出發(fā),游玩后中午12:00回到賓館.小聰騎車從飛瀑出發(fā)前往賓館,速度為20km/h,途中遇見小慧時,小慧恰好游完一景點后乘車前往下一景點.上午10:00小聰?shù)竭_賓館.圖2中的圖象分別表示兩人離賓館的路程s(km)與時間t(h)的函數(shù)關系.試結合圖中信息回答:
(1)小聰上午幾點鐘從飛瀑出發(fā)?
(2)試求線段AB、GH的交點B的坐標,并說明它的實際意義.
(3)如果小聰?shù)竭_賓館后,立即以30km/h的速度按原路返回,那么返回途中他幾點鐘遇見小慧?

【答案】
(1)解:小聰騎車從飛瀑出發(fā)到賓館所用時間為:50÷20=2.5(小時),

∵上午10:00小聰?shù)竭_賓館,

∴小聰上午7點30分從飛瀑出發(fā)


(2)解:3﹣2.5=0.5,

∴點G的坐標為(0.5,50),

設GH的解析式為s=kt+b,

把G(0.5,50),H(3,0)代入得; ,

解得: ,

∴s=﹣20t+60,

當s=30時,t=1.5,

∴B點的坐標為(1.5,30),

點B的實際意義是當小慧出發(fā)1.5小時時,小慧與小聰相遇,且離賓館的路程為30km


(3)解:50÷30= (小時)=1小時40分鐘,12﹣ ,

∴當小慧在D點時,對應的時間點是10:20,

而小聰?shù)竭_賓館返回的時間是10:00,

設小聰返回x小時后兩人相遇,根據(jù)題意得:30x+30(x﹣ )=50,

解得:x=1,

10+1=11=11點,

∴小聰?shù)竭_賓館后,立即以30km/h的速度按原路返回,那么返回途中他11點遇見小慧


【解析】(1)根據(jù)時間=路程÷速度,可得小聰騎車從飛瀑出發(fā)到賓館所用時間為:50÷20=2.5(小時),從10點往前推2.5小時,即可解答;(2)利用得到待定系數(shù)法求GH的解析式,當s=30時,求出t的值,即可確定點B的坐標;(3)根據(jù)50÷30= (小時)=1小時40分鐘,確定當小慧在D點時,對應的時間點是10:20,而小聰?shù)竭_賓館返回的時間是10:00,設小聰返回x小時后兩人相遇,根據(jù)題意得:30x+30(x﹣ )=50,解得:x=1,10+1=11點,即可解答.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀對學生的成長有著深遠的影響,某中學為了解學生每周課余閱讀的時間,在本校隨機抽取了若干名學生進行調(diào)查,并依據(jù)調(diào)查結果繪制了以下不完整的統(tǒng)計圖表.

組別

時間(小時)

頻數(shù)(人數(shù))

頻率

A

0≤t≤0.5

6

0.15

B

0.5≤t≤1

a

0.3

C

1≤t≤1.5

10

0.25

D

1.5≤t≤2

8

b

E

2≤t≤2.5

4

0.1

合計

1

請根據(jù)圖表中的信息,解答下列問題:

(1)表中的a= , b= , 中位數(shù)落在組,將頻數(shù)分布直方圖補全
(2)估計該校2000名學生中,每周課余閱讀時間不足0.5小時的學生大約有多少名?
(3)E組的4人中,有1名男生和3名女生,該校計劃在E組學生中隨機選出兩人向全校同學作讀書心得報告,請用畫樹狀圖或列表法求抽取的兩名學生剛好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BC是⊙O的直徑,點D為BC延長線上的一點,點A為圓上一點,且AB=AD,AC=CD.
(1)求證:△ACD∽△BAD;
(2)求證:AD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作⊙O的切線DF,交AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖1是一張可以折疊的小床展開后支撐起來放在地面的示意圖,此時點A、B、C在同一直線上,且∠ACD=90°,圖2是小床支撐腳CD折疊的示意圖,在折疊過程中,△ACD變形為四邊形ABC′D′,最后折疊形成一條線段BD″.
(1)小床這樣設計應用的數(shù)學原理是
(2)若AB:BC=1:4,則tan∠CAD的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都經(jīng)過原點,頂點分別為A,B,與x軸的另一交點分別為M,N,如果點A與點B,點M與點N都關于原點O成中心對稱,則稱拋物線C1和C2為姐妹拋物線,請你寫出一對姐妹拋物線C1和C2 , 使四邊形ANBM恰好是矩形,你所寫的一對拋物線解析式是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某地2月18日到23日PM2.5濃度和空氣質(zhì)量指數(shù)AQI的統(tǒng)計圖(當AQI不大于100時稱空氣質(zhì)量為“優(yōu)良”).由圖可得下列說法:①18日的PM2.5濃度最低;②這六天中PM2.5濃度的中位數(shù)是112μg/m3;③這六天中有4天空氣質(zhì)量為“優(yōu)良”;④空氣質(zhì)量指數(shù)AQI與PM2.5濃度有關.其中正確的是(
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰三角形的腰長為6cm,底邊長為4cm,以等腰三角形的頂角的頂點為圓心5cm為半徑畫圓,那么該圓與底邊的位置關系是(
A.相離
B.相切
C.相交
D.不能確定

查看答案和解析>>

同步練習冊答案