如圖所示,PA⊥OA,PB⊥OB,垂足分別是A和B,點(diǎn)D是OP的中點(diǎn),則DA與DB的長度關(guān)系是:______.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
A、2
| ||
B、
| ||
C、4 | ||
D、6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013
如圖所示,PA切⊙O于點(diǎn)A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞
點(diǎn)O逆時針方向旋轉(zhuǎn)60°到OD,則PD的長為
[ ]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:013
如圖所示,PA切⊙O于點(diǎn)A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點(diǎn)O逆時針方向旋轉(zhuǎn)60°到OD,則PD的長為
[ ]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【考點(diǎn)】切線的性質(zhì);圓周角定理.
【專題】計算題.
【分析】連接OA,OB,在優(yōu)弧AB上任取一點(diǎn)D(不與A、B重合),連接BD,AD,如圖所示,由PA與PB都為圓O的切線,利用切線的性質(zhì)得到OA與AP垂直,OB與BP垂直,在四邊形APOB中,根據(jù)四邊形的內(nèi)角和求出∠AOB的度數(shù),再利用同弧所對的圓周角等于所對圓心角的一半求出∠ADB的度數(shù),再根據(jù)圓內(nèi)接四邊形的對角互補(bǔ)即可求出∠ACB的度數(shù).
【解答】連接OA,OB,在優(yōu)弧AB上任取一點(diǎn)D(不與A、B重合),
連接BD,AD,如圖所示:
∵PA、PB是⊙O的切線,
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,又∠P=40°,
∴∠AOB=360°-(∠OAP+∠OBP+∠P)=140°,
∵圓周角∠ADB與圓心角∠AOB都對弧AB,
∴∠ADB=∠AOB=70°,
又∵四邊形ACBD為圓內(nèi)接四邊形,
∴∠ADB+∠ACB=180°,
則∠ACB=110°.
故選B。
【點(diǎn)評】此題考查了切線的性質(zhì),圓周角定理,圓內(nèi)接四邊形的性質(zhì),以及四邊形的內(nèi)角和,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com