如圖,在四邊形ABCD中,E為AB上一點(diǎn),△ADE和△BCE都是等邊三角形,AB、BC、CD、DA的中點(diǎn)分別為P、Q、M、N,試判斷四邊形PQMN為怎樣的四邊形,并證明你的結(jié)論.

【答案】分析:先利用中位線定理得出PQAC,MNAC即MNPQ得到四邊形PQMN為平行四邊形,再求得△AEC≌△DEB,得到PQ=AC=BD=PN,所以四邊形PQMN為菱形.
解答:解:四邊形PQMN為菱形.
證明:如圖,連接AC、BD.
∵PQ為△ABC的中位線,
∴PQAC.
同理MNAC.
∴MNPQ,
∴四邊形PQMN為平行四邊形.
在△AEC和△DEB中,
AE=DE,EC=EB,∠AED=60°=∠CEB,
即∠AEC=∠DEB.
∴△AEC≌△DEB.
∴AC=BD.
∴PQ=AC=BD=PN
∴四邊形PQMN為菱形.
點(diǎn)評(píng):主要考查了等邊三角形的性質(zhì)以及中位線定理和菱形的判定.要牢記這些性質(zhì)定理才會(huì)靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案