【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l1:y=mx(m≠0) 與直線l2:y=ax+b(a≠0) 相交于點 A(1,2),直線l2與 x軸交于點B(3,0).
(1)分別求直線l1 和l2的表達(dá)式;
(2)過動點P(0,n)且平行于x軸的直線與l1 ,l2的交點分別為C ,D,當(dāng)點 C 位于點 D 左方時,寫出 n的取值范圍.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AB是的直徑,直線L與相切于點C,,CD交AB于E,直線L,垂足為F,BF交于C.
圖中哪條線段與AE相等?試證明你的結(jié)論;
若,,求AB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:某商場因換季,將一品牌服裝打折銷售,每件服裝如果按標(biāo)價的六折出售將虧10元,而按標(biāo)價的七五折出售將賺50元,問:
(1) 每件服裝的標(biāo)價是多少元?
(2) 每件服裝的成本是多少元?
(3)為保證不虧本,最多能打幾折?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線 (其中 )與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于點C,拋物線的對稱軸l與x軸交于點D,且點D恰好在線段BC的垂直平分線上.
(1)求拋物線的關(guān)系式;
(2)過點 的線段MN∥y軸,與BC交于點P,與拋物線交于點N.若點E是直線l上一點,且∠BED=∠MNB-∠ACO時,求點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個正方體的平面展開圖,標(biāo)注了A字母的是正方體的正面,如果正方體的左面與右面標(biāo)注的式子相等.
(1)求x的值.
(2)求正方體的上面和底面的數(shù)字和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某檢修小組乘汽車從地出發(fā),在東西走向的馬路上檢修線路,如果規(guī)定向東行駛為正,一天中七個檢修點的行駛記錄如下(單位:):
-4,+7,-9,+8,+6,-4,-3.
(1)收工時汽車共行駛了多少千米?
(2)收工時,汽車距地多遠(yuǎn)?
(3)在檢修時,第幾個檢修點離地最遠(yuǎn),最遠(yuǎn)距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠ABC=90°,AB=BC,點D是AC的中點,直角∠EDF的兩邊分別交AB、BC于點E、F,給出以下結(jié)論:①AE=BF;②S四邊形BEDF=S△ABC;③△DEF是等腰直角三角形;④當(dāng)∠EDF在△ABC內(nèi)繞頂點D旋轉(zhuǎn)時D旋轉(zhuǎn)時(點E不與點A、B重合),∠BFE=∠CDF,上述結(jié)論始終成立的有( )個.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在銳角△ABC中,∠ABC=45°,高線AD、BE相交于點F.
(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;
(2)如圖2,將△ACD沿線段AD對折,點C落在BD上的點M,AM與BE相交于點N,當(dāng)DE∥AM時,判斷NE與AC的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究規(guī)律,完成相關(guān)題目.
老師說:“我定義了一種新的運算,叫(加乘)運算.”
然后老師寫出了一些按照(加乘)運算的運算法則進(jìn)行運算的算式:
(+5)(+2)=+7;(-3)(-5)=+8;
(-3)(+4)=-7; (+5)(-6)=-11;
0(+8)=8;(-6)0=6.
小明看了這些算式后說:“我知道老師定義的(加乘)運算的運算法則了.”
聰明的你也明白了嗎?
(1)歸納(加乘)運算的運算法則:
兩數(shù)進(jìn)行(加乘)運算時,運算法則是什么.
特別地,0和任何數(shù)進(jìn)行(加乘)運算,或任何數(shù)和0進(jìn)行(加乘)運算運算法則是什么.
(2)計算:
①()[()].(括號的作用與它在有理數(shù)運算中的作用一致)
② 若()( ).求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com