【題目】對平面直角坐標系中的點Px,y),定義d=|x|+|y|,我們稱dPxy)的幸福指數(shù).對于函數(shù)圖象上任意一點Px,y),若它的幸福指數(shù)d≥1恒成立,則稱此函數(shù)為幸福函數(shù),如二次函數(shù)y=x2+1就是一個幸福函數(shù),理由如下:設Px,y)為y=x2+1上任意一點,d=|x|+|y|=|x|+|x2+1|,|x|≥0|x2+1|=x2+1≥1,d≥1y=x2+1是一個幸福函數(shù).

1)若點P在反比例函數(shù)y=的圖象上,且它的幸福指數(shù)d=2,請直接寫出所有滿足條件的P點坐標;

2)一次函數(shù)y=﹣x+1是幸福函數(shù)嗎?請判斷并說明理由;

3)若二次函數(shù)y=x22m+1x+m2+mm0)是幸福函數(shù),試求出m的取值范圍.

【答案】1)滿足條件的P點坐標為(﹣1,﹣1)或(1,1);

2)一次函數(shù)y=﹣x+1是幸福函數(shù),理由見解析;

3)若二次函數(shù)y=x22m+1x+m2+mm0)是幸福函數(shù),m的取值范圍為m≥2

【解析】試題分析:(1)設點P的坐標為(m ),根據(jù)幸福指數(shù)的定義,即可得出關于m的分式方程,解之經檢驗即可得出結論;

(2)設Px,y)為y=-x+1上的一點,分x<0、0≤x≤1x>1三種情況找出d的取值范圍,由此即可得出一次函數(shù)y=-x+1是幸福函數(shù);

(3)設Pxy)為yx2-(2m+1)xm2m上的一點,由yx2-(2m+1)xm2m=(xm)(xm-1)m>0,可知分x≤0、0<xm、mxm+1、xm+1四段尋找m的取值范圍,利用配方法以及二次函數(shù)的性質結合幸福函數(shù)的定義即可求出m的取值范圍,綜上即可得出結論.

試題解析:

解:(1)設點P的坐標為(m ),

d|m|||2,

解得:m1﹣1,m21

經檢驗,m1﹣1m21是原分式方程的解,

∴滿足條件的P點坐標為(﹣1﹣1)或(1,1).

2)一次函數(shù)yx1是幸福函數(shù),理由如下:

Pxy)為yx1上的一點,d|x||y||x||﹣x1|,

x0時,d|x||﹣x1|xx11﹣2x1

0≤x≤1時,d|x||﹣x1|xx11;

x1時,d|x||﹣x1|xx﹣12x﹣11

∴對于yx1上任意一點Pxy),它的幸福指數(shù)d≥1恒成立,

∴一次函數(shù)yx1是幸福函數(shù).

3)設Px,y)為yx2-(2m+1)xm2m上的一點,d|x||y||x||x2﹣(2m1)xm2m|,

yx2-(2m+1)xm2m=(xm)(xm-1)m0,

∴分x≤0、0xmmxm1、xm1考慮.

①當x≤0時,d|x||x2﹣(2m1)xm2m|xx2﹣(2m1)xm2m(xm﹣1)2m﹣1,

x0時,d取最小值,最小值為m2m

m2m≥1,

解得:m;

0xm時,d|x||x2﹣(2m1)xm2m|xx2﹣(2m1)xm2m (xm)2m﹣1≥1,

(xm)2≥0,

m﹣1≥1,

解得:m≥2;

③當mxm1時,d|x||x2﹣(2m1)xm2m|xx2(2m1)xm2m ﹣(xm﹣1)2m1

xm時,d取最小值,最小值為m,

m≥1;

④當xm1時,d|x||x2﹣(2m1)xm2m|xx2﹣(2m1)xm2m(xm)2m﹣1m≥1

m≥1

綜上所述:若二次函數(shù)yx2-(2m+1)xm2mm0)是幸福函數(shù),m的取值范圍為m≥2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】直線交于,,,則的度數(shù)為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD是邊長為2的菱形,∠BAD=60°,對角線ACBD交于點O,過點O的直線EFAD于點E,交BC于點F

1)求證:AOE≌△COF;

2)若∠EOD=30°,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,,點是線段上一點(不與端點重合),、分別平分于點、.

1)請說明:;

2)當點上移動時,請寫出之間滿足的數(shù)量關系為______

3)若,則當點移動到使得時,請直接寫出______(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列調查中,最適宜采用全面調查方式(普查)的是(

A. 對襄陽市中學生每天課外讀書所用時間的調查

B. 對全國中學生心理健康現(xiàn)狀的調查

C. 對七年級(2)班學生米跑步成績的調查

D. 對市面某品牌中性筆筆芯使用壽命的調查

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=2a,∠AMN=40°,點B為弧AN的中點,點P是直徑MN上的一個動點,則 PA+PB的最小值為_____.(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC△DBC都是邊長為2的等邊三角形.

1)以圖1中的某個點為旋轉中心,旋轉△DBC,就能使△DBC△ABC重合,則滿足題意的點為: (寫出符合條件的所有點);

2)將△DBC沿BC方向平移得到△D1B1C1,如圖2、圖3,則四邊形ABD1C1是平行四邊形嗎?證明你的結論;

3)在(2)的條件下,當BB1= 時,四邊形ABD1C1為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點P從點B出發(fā),沿對角線BD向點D勻速運動,速度為4cm/s,過點P作PQ⊥BD交BC于點Q,以PQ為一邊作正方形PQMN,使得點N落在射線PD上.點O從點D出發(fā),沿DC向點C勻速運動,速度為3cm/s,以O為圓心,1cm半徑作⊙O.點P與點D同時出發(fā),設它們的運動時間為t(單位:s) (0≤t≤).

(1)如圖1,連接DQ,若DQ平分∠BDC,則t的值為   s;

(2)如圖2,連接CM,設△CMQ的面積為S,求S關于t的函數(shù)關系式;

(3)在運動過程中,當t為何值時,⊙O與MN第一次相切?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【探究證明】

(1)某班數(shù)學課題學習小組對矩形內兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關系進行探究,提出下列問題,請你給出證明.

如圖①,在矩形ABCD中,EFGH,EF分別交AB,CD于點EF,GH分別交ADBC于點G,H.求證:

【結論應用】

(2)如圖②,在滿足(1)的條件下,又AMBN,點M,N分別在邊BCCD上,若,則的值為 ;

【聯(lián)系拓展】

(3)如圖③,四邊形ABCD中,∠ABC=90°AB=AD=10,BC=CD=5AMDN,點MN分別在邊BC,AB上,求的值.

查看答案和解析>>

同步練習冊答案