【題目】某網(wǎng)店銷售一種兒童玩具,進(jìn)價為每件30元,物價部門規(guī)定每件兒童玩具的銷售利潤不高于進(jìn)價的.在銷售過程中發(fā)現(xiàn),這種兒童玩具每天的銷售量(件與銷售單價(元滿足一次函數(shù)關(guān)系.當(dāng)銷售單價為35元時,每天的銷售量為350件;當(dāng)銷售單價為40元時,每天的銷售量為300件.
(1)求與之間的函數(shù)關(guān)系式.
(2)當(dāng)銷售單價為多少時,該網(wǎng)店銷售這種兒童玩具每天獲得的利潤最大,最大利潤是多少?
【答案】(1);(2)當(dāng)銷售單價為48元時,該網(wǎng)店銷售這種兒童玩具每天獲得的利潤最大,最大利潤是3960元.
【解析】
(1)設(shè)與之間的函數(shù)關(guān)系式為,根據(jù)題意得到方程組,于是得到結(jié)論;
(2)設(shè)利潤為元,列不等式得到,根據(jù)題意得到函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.
(1)設(shè)與之間的函數(shù)關(guān)系式為,
根據(jù)題意得,,
解得:,
與之間的函數(shù)關(guān)系式為;
(2)設(shè)利潤為元,
,
,
根據(jù)題意得,,
,對稱軸,
當(dāng)時,,
答:當(dāng)銷售單價為48元時,該網(wǎng)店銷售這種兒童玩具每天獲得的利潤最大,最大利潤是3960元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共10只,某學(xué)習(xí)小組做摸球?qū)嶒,將球攪勻后從中隨機摸出一個球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動進(jìn)行中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù) | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次數(shù) | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的頻率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)請估計:當(dāng)很大時,摸到白球的頻率將會接近 ;(保留二個有效數(shù)字)
(2)試估算口袋中黑、白兩種顏色的球各有多少只?
(3)請畫樹狀圖或列表計算:從中一次摸兩只球,這兩只球顏色不同的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將菱形紙片ABCD折疊,使點A恰好落在菱形的對稱中心O處,折痕為EF,若菱形ABCD的邊長為2cm,∠A=120°,則EF的長為( )
A. 2 B. 2 C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE是⊙O的直徑,點A和點D是⊙O上的兩點,過點A作⊙O的切線交BE延長線于點C
(I)若∠ADE=25°,求∠C的度數(shù)
(II)若AB=AC,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,圖象過點A(﹣3,0),對稱軸是直線x=﹣1,給出五個結(jié)論:①b2>4ac;②2a﹣b=0;③c<0;④a+b+c=0;⑤a﹣b+c<0.其中正確的是____(把你認(rèn)為正確的序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一段120m的籬笆,準(zhǔn)備用這些籬笆借助一段墻角圍成如圖所示兩塊面積相同的矩形場地養(yǎng)雞.
(1)如圖所示,若圍成的場地總面積為1750m2,則該場地的寬(圖中縱向)應(yīng)為多少?
(2)能不能圍成面積為2000m2的場地?若能,求出此時籬笆的寬;若不能,求圍成場地面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個用來盛爆米花的圓錐形紙杯,紙杯開口的直徑 EF 長為10cm,母線OE(OF)長為10cm,在母線OF 上的點A 處有一塊爆米花殘渣且FA=2cm,一只螞蟻從杯口的點E 處沿圓錐表面爬行到A 點,則此螞蟻爬行的最短距離為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O 為原點,點 A(4,0),點 B(0,3),把△ABO 繞點 B 逆時針旋轉(zhuǎn),得△A′BO′,點 A、O 旋轉(zhuǎn)后的對應(yīng)點為 A′、O′,記旋轉(zhuǎn)角為ɑ.
(1)如圖 1,若ɑ=90°,求 AA′的長;
(2)如圖 2,若ɑ=120°,求點 O′的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com