(2010•荊州)已知:關于x的一元二次方程x2+(2k-1)x+k2=0的兩根x1,x2滿足x12-x22=0,雙曲線(x>0)經過Rt△OAB斜邊OB的中點D,與直角邊AB交于C(如圖),求S△OBC

【答案】分析:首先由一元二次方程根的判別式得出k的取值范圍,然后由x12-x22=0得出x1-x2=0或x1+x2=0,再運用一元二次方程根與系數(shù)的關系求出k的值,由k的幾何意義,可知S△OCA=|k|.如果過D作DE⊥OA于E,則S△ODE=|k|.易證△ODE∽△OBA,根據(jù)相似三角形的面積比等于相似比的平方,得出S△OBA,最后由S△OBC=S△OBA-S△OCA,得出結果.
解答:解:∵x2+(2k-1)x+k2=0有兩根,
∴△=(2k-1)2-4k2≥0,

由x12-x22=0得:(x1-x2)(x1+x2)=0.
當x1+x2=0時,-(2k-1)=0,解得,不合題意,舍去;
當x1-x2=0時,x1=x2,△=(2k-1)2-4k2=0,
解得:符合題意.
∵y=,
∴雙曲線的解析式為:
過D作DE⊥OA于E,則
∵DE⊥OA,BA⊥OA,
∴DE∥AB,∴△ODE∽△OBA,
,∴,

點評:本題綜合考查了一元二次方程根的判別式、根與系數(shù)的關系,反比例函數(shù)比例系數(shù)k的幾何意義,相似三角形的性質等多個知識點.此題難度稍大,綜合性比較強,注意對各個知識點的靈活應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2010•荊州)已知:關于x的一元二次方程x2+(2k-1)x+k2=0的兩根x1,x2滿足x12-x22=0,雙曲線(x>0)經過Rt△OAB斜邊OB的中點D,與直角邊AB交于C(如圖),求S△OBC

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2010•荊州)國家推行“節(jié)能減排,低碳經濟”政策后,某環(huán)保節(jié)能設備生產企業(yè)的產品供不應求.若該企業(yè)的某種環(huán)保設備每月的產量保持在一定的范圍,每套產品的生產成本不高于50萬元,每套產品的售價不低于90萬元.已知這種設備的月產量x(套)與每套的售價y1(萬元)之間滿足關系式y(tǒng)1=170-2x,月產量x(套)與生產總成本y2(萬元)存在如圖所示的函數(shù)關系.
(1)直接寫出y2與x之間的函數(shù)關系式;
(2)求月產量x的范圍;
(3)當月產量x(套)為多少時,這種設備的利潤W(萬元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省荊州市中考數(shù)學試卷(解析版) 題型:解答題

(2010•荊州)國家推行“節(jié)能減排,低碳經濟”政策后,某環(huán)保節(jié)能設備生產企業(yè)的產品供不應求.若該企業(yè)的某種環(huán)保設備每月的產量保持在一定的范圍,每套產品的生產成本不高于50萬元,每套產品的售價不低于90萬元.已知這種設備的月產量x(套)與每套的售價y1(萬元)之間滿足關系式y(tǒng)1=170-2x,月產量x(套)與生產總成本y2(萬元)存在如圖所示的函數(shù)關系.
(1)直接寫出y2與x之間的函數(shù)關系式;
(2)求月產量x的范圍;
(3)當月產量x(套)為多少時,這種設備的利潤W(萬元)最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案