【題目】如圖,有一塊長方形鋼板,工人師傅想把它分成面積相等的兩部分,請(qǐng)你在圖中畫出作圖痕跡.

【答案】答案見詳解。

【解析】

先將圖形分割成兩個(gè)矩形或?qū)D形補(bǔ)充成一個(gè)大矩形,再分別找出圖中兩個(gè)矩形各自的對(duì)稱中心,過兩個(gè)對(duì)稱中心做直線即可.

解:解法一:鋼板可看成由上下兩個(gè)矩形構(gòu)成(如圖所示),矩形是中心對(duì)稱圖形,過對(duì)稱中心的任一直線把矩形分成全等的兩部分,自然平分其面積,而矩形的對(duì)稱中心是兩條對(duì)角線的交點(diǎn),因此,先作出兩矩形的對(duì)稱中心,過兩個(gè)對(duì)稱中心做直線即可.

解法二:該鋼板同樣可看成左右兩矩形構(gòu)成(如圖所示),作出兩矩形對(duì)稱中心,過兩個(gè)對(duì)稱中心做直線即可.

解法三:將鋼板補(bǔ)成一個(gè)完整矩形(如圖所示),作出大矩形對(duì)稱中心和補(bǔ)上一塊矩形的對(duì)稱中心,過兩個(gè)對(duì)稱中心做直線即可

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC,AB=AC,DBC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE.

(1)連接EC,如圖①,試探索線段BC,CD,CE之間滿足的等量關(guān)系,并證明你的結(jié)論;

(2)連接DE,如圖②,求證:BD2+CD2=2AD2

(3)如圖③,在四邊形ABCD中,∠ABC=ACB=ADC=45°,若BD=,CD=1,則AD的長為 .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

12(-4)+(-2

33

⑥-14(0.52)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某自行車廠一周計(jì)劃生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計(jì)劃量相比有出入.下表是某周的生產(chǎn)情況(超產(chǎn)為正、減產(chǎn)為負(fù)):

1)根據(jù)記錄可知前三天共生產(chǎn)______輛;

2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)______輛;

3)該廠實(shí)行每周計(jì)件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務(wù),則超過部分每輛另獎(jiǎng)15元;少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?請(qǐng)說明理由.

4)若將上面第(3)問中實(shí)行每周計(jì)件工資制改為實(shí)行每日計(jì)件工資制,其他條件不變,在此方式下該廠工人這一周按日計(jì)件工資與按周計(jì)件的工資哪一個(gè)更多?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為保護(hù)環(huán)境,我市某公交公司計(jì)劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車3輛,B型公交車2輛,共需600萬元.

(1)求購買A型和B型公交車每輛各需多少萬元?

(2)預(yù)計(jì)在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費(fèi)用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?

(3)(2)的條件下,哪種購車方案總費(fèi)用最少?最少總費(fèi)用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)到目前為止,已研究的圖形變換有哪幾種?這些變換的共同性質(zhì)有哪些?

(2)如圖,O是正六邊形ABCDEF的中心,圖中可由△OBC旋轉(zhuǎn)得到的三角形有a個(gè),可由△OBC平移得到的三角形有b個(gè),可由△OBC軸對(duì)稱得到的三角形有c個(gè),試求(a+b+c)a+b-c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點(diǎn)A2,1).

(1)分別求出這兩個(gè)函數(shù)的解析式;

(2)當(dāng)x取什么范圍時(shí),反比例函數(shù)值大于0;

(3)若一次函數(shù)與反比例函數(shù)另一交點(diǎn)為B,且縱坐標(biāo)為﹣4,當(dāng)x取什么范圍時(shí),反比例函數(shù)值大于一次函數(shù)的值;

(4)試判斷點(diǎn)P(﹣1,5)關(guān)于x軸的對(duì)稱點(diǎn)P′是否在一次函數(shù)y=kx+m的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校的操場上有一旗桿AB,甲在操場上的C處豎立3 m高的竹竿CD;乙從C處退到E處恰好看到竹竿頂端D與旗桿頂端B重合,量得CE3 m,乙的眼睛到地面的距離FE1.5 m;丙在C1處豎立3 m高的竹竿C1D1,乙從E處后退6 mE1處,恰好看到兩根竹竿和旗桿重合,且竹竿頂端D1與旗桿頂端B也重合,量得C1E14 m.求旗桿AB的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】猜想與證明:如圖①擺放矩形紙片ABCD與矩形紙片ECGF,使B,CG三點(diǎn)在一條直線上,CE在邊CD上.連結(jié)AF,若MAF的中點(diǎn),連結(jié)DM,ME,試猜想DMME的數(shù)量關(guān)系,并證明你的結(jié)論.

拓展與延伸:

(1)若將“猜想與證明”中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DMME的關(guān)系為__________________;

(2)如圖②擺放正方形紙片ABCD與正方形紙片ECGF,使點(diǎn)F在邊CD上,點(diǎn)M仍為AF的中點(diǎn),試證明(1)中的結(jié)論仍然成立.[提示:直角三角形斜邊上的中線等于斜邊的一半]

 

查看答案和解析>>

同步練習(xí)冊(cè)答案