【題目】尺規(guī)作圖,不寫作法,保留作圖痕跡.
如圖,△ABC中,∠A=60°.
(1)試求作一點P,使得點P到B、C兩點的距離相等,并且到AB、BC兩邊的距離也相等(尺規(guī)作圖,不寫作法,保留作圖痕跡).
(2)在(1)的條件下,若∠ACP=15°,求∠BPC的度數(shù).
【答案】(1)見解析;(2)∠BPC=110°.
【解析】
(1)利用垂直平分線的作法結(jié)合角平分線的作法進(jìn)而得出答案;(2)根據(jù)中垂線的性質(zhì)得出∠PBC=∠PCB,根據(jù)角平分線的性質(zhì)得出∠PBC=∠ABP,根據(jù)三角形內(nèi)角和定理推出∠ABP+∠PBC+∠PCB+∠ACP=120°,進(jìn)而得到∠ABP=35°,進(jìn)而可得∠BPC的大小.
解:(1)如圖,
(2)如圖,
∵PD是BC的中垂線,
∴∠PBC=∠PCB,
∵BP是∠ABC的角平分線,
∴∠PBC=∠ABP,
∵∠A=60°,
∴∠ABP+∠PBC+∠PCB+∠ACP=120°,
∵∠ACP=15°,
∴∠ABP=35°.
∴∠BPC=110°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中有兩點M(a,b),N(c,d),規(guī)定(a,b)⊕(c,d)=(a+c,b+d),則稱點Q(a+c,b+d)為M,N的“和點”.若以坐標(biāo)原點O與任意兩點及它們的“和點”為頂點能構(gòu)成四邊形,則稱這個四邊形為“和點四邊形”,現(xiàn)有點A(2,5),B(﹣1,3),若以O(shè),A,B,C四點為頂點的四邊形是“和點四邊形”,則點C的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某日的錢塘江觀潮信息如表:
按上述信息,小紅將“交叉潮”形成后潮頭與乙地之間的距離 (千米)與時間 (分鐘)的函數(shù)關(guān)系用圖3表示,其中:“11:40時甲地‘交叉潮’的潮頭離乙地12千米”記為點 ,點 坐標(biāo)為 ,曲線 可用二次函數(shù) ( , 是常數(shù))刻畫.
(1)求 的值,并求出潮頭從甲地到乙地的速度;
(2)11:59時,小紅騎單車從乙地出發(fā),沿江邊公路以 千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?
(3)相遇后,小紅立即調(diào)轉(zhuǎn)車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為 千米/分,小紅逐漸落后,問小紅與潮頭相遇到落后潮頭1.8千米共需多長時間?(潮水加速階段速度 , 是加速前的速度).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)某商場用2500元購進(jìn)了A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進(jìn)價,標(biāo)價如下表所示:
(1)這兩種臺燈各購進(jìn)多少盞?
(2)若A型臺燈按標(biāo)價的九折出售,B型臺燈按標(biāo)價的八折出售,那么這批臺燈全部售完后,商場共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,坐標(biāo)分別是,且滿足,現(xiàn)同時將點分別向下平移3個單位,再向左平移1個單位,分別得到點的對應(yīng)點,連接.
(1)求點的坐標(biāo)及四邊形的面積;
(2)在y軸上是否存在一點,連接,使?若存在這樣的點,求出點M的坐標(biāo),若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象交x軸于A、B兩點,交y軸于點D,點B的坐標(biāo)為(3,0),頂點C的坐標(biāo)為(1,4).
(1)求二次函數(shù)的解析式和直線BD的解析式;
(2)點P是直線BD上的一個動點,過點P作x軸的垂線,交拋物線于點M,當(dāng)點P在第一象限時,求線段PM長度的最大值;
(3)在拋物線上是否存在異于B、D的點Q,使△BDQ中BD邊上的高為2 ?若存在求出點Q的坐標(biāo);若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】君暢中學(xué)計劃購買一些文具送給學(xué)生,為此學(xué)校決定圍繞“在筆袋、圓規(guī)、直尺、鋼筆四種文具中,你最需要的文具是什么?(必選且只選一種)”的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你根據(jù)以上信息回答下列問題:
(1)在這次調(diào)查中,最需要圓規(guī)的學(xué)生有多少名?并補(bǔ)全條形統(tǒng)計圖;
(2)如果全校有970名學(xué)生,請你估計全校學(xué)生中最需要鋼筆的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠A=∠AGE,∠D=∠DGC.
(1)試說明AB∥CD;
(2)若∠1+∠2=180°,且∠BEC=2∠B+60°,求∠C的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com