精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB是⊙O的直徑,點P是弦AC上一動點(不與A,C重合),過點P作PE⊥AB,垂足為E,射線EP交 于點F,交過點C的切線于點D.

(1)求證:DC=DP;
(2)若∠CAB=30°,當F是 的中點時,判斷以A,O,C,F(xiàn)為頂點的四邊形是什么特殊四邊形?說明理由.

【答案】
(1)

證明:

連接BC、OC,

∵AB是⊙O的直徑,

∴∠OCD=90°,

∴∠OCA+∠OCB=90°,

∵∠OCA=∠OAC,∠B=∠OCB,

∴∠OAC+∠B=90°,

∵CD為切線,

∴∠OCD=90°,

∴∠OCA+∠ACD=90°,

∴∠B=∠ACD,

∵PE⊥AB,

∴∠APE=∠DPC=∠B,

∴∠DPC=∠ACD,

∴AP=DC;


(2)

解:以A,O,C,F(xiàn)為頂點的四邊形是菱形;

∵∠CAB=30°,∴∠B=60°,

∴△OBC為等邊三角形,

∴∠AOC=120°,

連接OF,AF,

∵F是 的中點,

∴∠AOF=∠COF=60°,

∴△AOF與△COF均為等邊三角形,

∴AF=AO=OC=CF,

∴四邊形OACF為菱形.


【解析】本題主要考查了切線的性質、圓周角定理和等邊三角形的判定等,作出恰當的輔助線利用切線的性質是解答此題的關鍵.(1)連接BC、OC,利用圓周角定理和切線的性質可得∠B=∠ACD,由PE⊥AB,易得∠APE=∠DPC=∠B,等量代換可得∠DPC=∠ACD,可證得結論;(2)由∠CAB=30°易得△OBC為等邊三角形,可得∠AOC=120°,由F是 的中點,易得△AOF與△COF均為等邊三角形,可得AF=AO=OC=CF,易得以A,O,C,F(xiàn)為頂點的四邊形是菱形.
【考點精析】掌握垂徑定理和切線的性質定理是解答本題的根本,需要知道垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條;切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,E,F(xiàn),G,H分別是矩形ABCD各邊的中點,AB=6,BC=8,則四邊形EFGH的面積是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的切線與AB的延長線交于點P,連接AC,若∠A=30°,PC=3,則BP的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場購進甲、乙兩種商品,乙商品的單價是甲商品單價的2倍,購買240元甲商品的數量比購買300元乙商品的數量多15件,求兩種商品單價各為多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點,AE=5,現(xiàn)要剪下一張等腰三角形紙片(△AEP),使點P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E、F分別在邊CD、BC上,且DC=3DE=3a.將矩形沿直線EF折疊,使點C恰好落在AD邊上的點P處,則FP=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】東坡商貿公司購進某種水果的成本為20元/kg,經過市場調研發(fā)現(xiàn),這種水果在未來48天的銷售單價p(元/kg)與時間t(天)之間的函數關系式為p= 且其日銷售量y(kg)與時間t(天)的關系如表:

時間t(天)

1

3

6

10

20

40

日銷售量y(kg)

118

114

108

100

80

40


(1)已知y與t之間的變化規(guī)律符合一次函數關系,試求在第30天的日銷售量是多少?
(2)問哪一天的銷售利潤最大?最大日銷售利潤為多少?
(3)在實際銷售的前24天中,公司決定每銷售1kg水果就捐贈n元利潤(n<9)給“精準扶貧”對象.現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求n的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知不等式組 ,其解集在數軸上表示正確的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是單位1,△ABC在平面直角坐標系中的位置如圖所示.
(1)將△ABC繞點O順時針方向旋轉90°后得△A1B1C1 , 畫出△A1B1C1并直接寫出點C1的坐標為;
(2)以原點O為位似中心,在第四象限畫一個△A2B2C2 , 使它與△ABC位似,并且△A2B2C2與△ABC的相似比為2:1.

查看答案和解析>>

同步練習冊答案