【題目】如圖,⊙OABC的外接圓,且AB=AC,點(diǎn)D在弧BC上運(yùn)動(dòng),過點(diǎn)DDEBCDEAB的延長(zhǎng)線于點(diǎn)E,連接AD、BD。

1)求證:∠ADB=E;

2)當(dāng)AB=5,BC=6時(shí),求⊙O的半徑.

【答案】1)見解析;(2

【解析】

1)由AB=AC,可證∠ABC=∠C;由平行線的性質(zhì)知∠ABC=∠E,結(jié)合圓周角定理可證結(jié)論成立;

2)可通過構(gòu)建直角三角形來求解,連接BO、AO,并延長(zhǎng)AOBC于點(diǎn)F,根據(jù)垂徑定理BF=CF,AF=r+OF,那么直角三角形OBF中可以用R表示出OF,OB,然后根據(jù)勾股定理求出半徑的長(zhǎng).

解:(1)在△ABC中,

∵AB=AC,

∴∠ABC=∠C.

∵DE∥BC

∴∠ABC=∠E,

∴∠E=∠C.

∵∠ADB=∠C,

∴∠ADB=∠E

2)連線BO、AO,并延長(zhǎng)AOBC于點(diǎn)F,則AF⊥BC,且BF=CF=3,

∵AB=5,

∴AF==4

設(shè)⊙O的半徑為r,在Rt△OBF中,OF=4-r,OB=r,BF=3

r2=32+4-r2,

解得r=

∴⊙O的半徑是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以ABC的三邊為邊在BC的同一側(cè)分別作三個(gè)等邊三角形,即ABD、BCEACF,請(qǐng)回答下列問題:

1)四邊形ADEF是什么四邊形?

2)當(dāng)ABC滿足什么條件時(shí),四邊形ADEF是矩形?

3)當(dāng)ABC滿足什么條件時(shí),以A、D、E、F為頂點(diǎn)的四邊形不存在?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠A=40°,若點(diǎn)OABC的外心,則∠BOC=_____°;若點(diǎn)IABC的內(nèi)心,則∠BIC=_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)分別進(jìn)行6次射擊訓(xùn)練,訓(xùn)練成績(jī)(單位:環(huán))如下表 對(duì)他們的訓(xùn)練成績(jī)作如下分析,其中說法正確的是(

A. 他們訓(xùn)練成績(jī)的平均數(shù)相同

B. 他們訓(xùn)練成績(jī)的中位數(shù)不同

C. 他們訓(xùn)練成績(jī)的方差不同

D. 他們訓(xùn)練成績(jī)的眾數(shù)不同

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AE是弦,C是弧AE的中點(diǎn),過點(diǎn)CGCAEBA的延長(zhǎng)線于點(diǎn)G,過點(diǎn)CCDAB于點(diǎn)D,交AE于點(diǎn)F

1)判斷GC與⊙O的位置關(guān)系,并證明.

2)若sinEAB =OD=,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

三角形的三個(gè)頂點(diǎn)確定一個(gè)圓,這個(gè)圓叫做三角形的外接圓、外接圓的圓心叫做三角形的外心,這個(gè)三角形叫做這個(gè)圓的內(nèi)接三角形。(蘇科版《數(shù)學(xué)》九上 2.3確定圓的條件)

問題初探:

1)三角形的外心到三角形的_____________距離相等

2)若點(diǎn)OABC的外心,試探索∠BOC與∠BAC之間的數(shù)量關(guān)系。

3)如圖,在RtABC中,∠ACB=90°,AC=BC。將線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°BD,連接ADCD。用直尺和圓規(guī)在圖中作出BCD的外心O,并求∠ADB的度數(shù)。(保留作圖痕跡,不寫作法。)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ΔABC沿BC翻折得到ΔDBC,再將ΔDBCC點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到ΔFEC,延長(zhǎng)B DEFH,已知∠ABC=30°,BAC=90°,AC=1,則四邊形CDHF的面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,

1)按如下步驟尺規(guī)作圖(保留作圖痕跡):

①作AD平分∠BAC,交BCD;

②作AD的垂直平分線MN分別交ABAC于點(diǎn)E、F;

2)連接DEDF.若BD12,AF8,CD6,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x22x+m0有兩個(gè)不相等的實(shí)數(shù)根x1、x2

1)求實(shí)數(shù)m的取值范圍;

2)若x1x21,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案