【題目】“創(chuàng)衛(wèi)工作,人人參與”我區(qū)園林工作者,為了把城市裝扮得更加靚麗,用若干相同的花盆按一定的規(guī)律組成不同的正多邊形圖案.如圖,其中第個圖形一共有個花盆,第個圖形一共有個花盆,第個圖形一共有個花盆...則第個圖形中一共有花盆的個數(shù)為( )

A.B.C.D.

【答案】D

【解析】

由題意可知,三角形每條邊上有3盆花,共計3×33盆花,正四邊形每條邊上有4盆花,共計4×44盆花,正五邊形每條邊上有5盆花,共計5×55盆花,…則正n變形每條邊上有n盆花,共計n×nn盆花,結(jié)合圖形的個數(shù)解決問題.

∵第一個圖形:三角形每條邊上有3盆花,共計323盆花,

第二個圖形:正四邊形每條邊上有4盆花,共計424盆花,

第三個圖形:正五邊形每條邊上有5盆花,共計525盆花,

n個圖形:正n2邊形每條邊上有n盆花,共計(n22n2)盆花,

則第8個圖形中花盆的個數(shù)為(82282)=90盆.

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩地相距60km,甲從A地去B地,乙從B地去A地,圖中、分別表示甲、乙兩人到B地的距離y(km)與甲出發(fā)時間x(h)的函數(shù)關(guān)系圖象.

(1)根據(jù)圖象,求乙的行駛速度.

(2)解釋交點A的實際意義.

(3)求甲出發(fā)多少時間,兩人之間恰好相距5km?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是菱形ABCD邊上的一動點,它從點A出發(fā)沿在A→B→C→D路徑勻速運動到點D,設(shè)PAD的面積為y,P點的運動時間為x,則y關(guān)于x的函數(shù)圖象大致為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下面一段材料,再完成后面的問題:

材料:過拋物線y=ax2(a0)的對稱軸上一點(0,﹣)作對稱軸的垂線l,則拋物線上任意一點P到點F(0,)的距離與Pl的距離一定相等,我們將點F與直線l分別稱作這拋物線的焦點和準線,如y=x2的焦點為(0,).

問題:若直線y=kx+b交拋物線y=x2A、B、AC、BD垂直于拋物線的準線l,垂直足分別為C、D(如圖).

①求拋物線y=x2的焦點F的坐標;

②求證:直線AB過焦點時,CFDF;

③當直線AB過點(﹣1,0),且以線段AB為直徑的圓與準l相切時,求這條直線對應(yīng)的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人用如圖所示的兩個分格均勻的轉(zhuǎn)盤做游戲:分別轉(zhuǎn)動兩個轉(zhuǎn)盤,若轉(zhuǎn)盤停止后,指針指向一個數(shù)字(若指針恰好停在分格線上,則重轉(zhuǎn)一次),用所指的兩個數(shù)字作乘積,如果積大于10,那么甲獲勝;如果積不大于10,那么乙獲勝.清你解決下列問題:

l)利用樹狀圖(或列表)的方法表示游戲所有可能出現(xiàn)的結(jié)果;

2)求甲、乙兩人獲勝的概率,并說明游戲是否公平.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,點邊上,且,是射線上的一個動點(不與點重合,且),在射線上截取,連接.

當點在線段上時,

①點與點重合,請根據(jù)題意補全圖1,并直接寫出線段的數(shù)量關(guān)系為 ;

②如圖2,若點不與點重合,請證明;

(2)當點在線段的延長線上時,用等式表示線段之間的數(shù)量關(guān)系(直接寫出結(jié)果,不需要證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示,CDAN.

(1)用尺規(guī)作圖作出∠MAN的平分線,交CD于點P.(保留作圖痕跡)

(2)(1)的基礎(chǔ)上,若∠PAN15°AC2,求點PAM的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的頂點為P(﹣3,3),與y軸交于點A(0,4),若平移該拋物線使其頂點P沿直線移動到點P′(3,﹣3),點A的對應(yīng)點為A′,則拋物線上PA段掃過的區(qū)域(陰影部分)的面積為(  )

A. 24 B. 12 C. 6 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是梯形,ADBC,∠A90°,BCBD,CEBD,垂足為E

(1)求證:ABD≌△ECB;

(2)若∠DBC50°,求∠DCE的度數(shù).

查看答案和解析>>

同步練習冊答案