解:(1)連接OB,則OA=OB;
∵∠OAB=35°,
∴∠OBA=∠OAB=35°,
∵∠AOB=180°-∠OAB-∠OBA,
∴∠AOB=180°-35°-35°=110°,
∴β=∠C=
∠AOB=55°.
(2)α與β之間的關(guān)系是α+β=90°;
證明:∵∠OBA=∠OAB=α,
∴∠AOB=180°-2α,
∵β=∠C=
∠AOB,
∴β=
(180°-2α)=90°-α,
∴α+β=90°.
分析:(1)連接OB,根據(jù)三角形外心的性質(zhì)可知:OA=OB;則在等腰△AOB中∠OBA=∠OAB;則再根據(jù)三角形內(nèi)角和定理可以求得∠AOB的度數(shù);最后根據(jù)圓周角定理可以求得β的度數(shù);
(2)由(1)可猜想α與β之間的關(guān)系是α+β=90°;同(1)一樣∠OBA=∠OAB=α,則∠AOB=180°-2α,β=∠C=
∠AOB,所以可求β=
(180°-2α)=90°-α,則α+β=90度.
點評:本題考查了三角形的外接圓的性質(zhì)以及圓周角定理.要熟練掌握這些性質(zhì)定理才能靈活運用.