【題目】在△ABC中,∠C=90°,

(1)a=4,b=3,則c=_______;

(2)a=24,c=30,則b=_______

(3)BC=11,AB=61,則AC=_______

【答案】5; 18; 60.

【解析】

已知三角形是直角三角形,兩條邊的長度,求第三邊,用勾股定理.

已知∠C=90°,一條直角邊和一條斜邊,求另一條直角邊,運用勾股定理.

繪出草圖,標上已知條件,運用勾股定理.

1)∠C90°,C為斜邊,根據(jù)勾股定理C5.故答案為5.

2)因為c2a2b2,所以b18.故答案為18.

3)如圖

BC11,即a11.AB61,即c61,求AC,即求b,所以b60.故答案為60.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】填空,完成下列說理過程:

O是直線AB上一點,∠COD = 90°,OE平分∠BOC.

(1)如圖1,若∠ AOC = 50°,求∠DOE的度數(shù);

解:∵O是直線AB上一點,

∴∠AOC +BOC =180°.

∵∠AOC =50°,

∴∠BOC =130°.

OE平分∠BOC(已知),

∴∠COE =BOC ( ).

∴∠COE = °.

∵∠COD = 90°,∠DOE = ,

∴∠DOE = °.

(2)將圖1中∠ COD按順時針方向轉至圖2所示的位置,OE仍然平分∠BOC.試猜想∠AOC與∠DOE的度數(shù)之間的關系為: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子里,裝有四個分別標有數(shù)字﹣2,﹣1,1,4的小球,它們的形狀、大小、質地等完全相同,小強先從盒子里隨機取出一個小球,記下數(shù)字為a;放回盒子搖勻后,再由小華隨機取出一個小球,記下數(shù)字為b.
(1)用列表法或畫樹狀圖表示出(a,b)的所有可能出現(xiàn)的結果;
(2)求小強、小華各取一次小球所確定的點(a,b)落在二次函數(shù)y=x2的圖象上的概率;
(3)求小強、小華各取一次小球所確定的數(shù)a,b滿足直線y=ax+b經(jīng)過一、二、三象限的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在半徑為2cm的⊙O中,弦AB的長為2 cm,則這條弦所對的圓周角為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售同一品牌羽絨服和防寒服,已知去年12月份,銷售羽絨服a件,防寒服銷量是羽絨服的4倍,其中防寒服售價為b/件,羽絨服的售價是防寒服的4倍,受市場影響,今年1月份,羽絨服銷量和售價均下降m%,但防寒服銷量和售價均增加m%.

(1)求該商場今年1月份銷售羽絨服和防寒服的銷售額;

(2)a100,b300,m5,則該商場今年1月份銷售羽絨服和防寒服的銷售額是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=41,AC=15AH=9,ABC的面積是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,DG⊥AE,垂足為G,若DG=1,則AE的長為( )

A.
B.
C.4
D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小明設計的“作角的平分線”的尺規(guī)作圖的過程

已知:如圖1,

求作:射線,使它平分

作法:如圖2,

①以點為圓心,任意長為半徑作弧,交于點,交于點;

②分別以點為圓心,以大于的同樣長為半徑作弧,兩弧交于點;

③作射線

所以射線就是所求作的射線

根據(jù)小明設計的尺規(guī)作圖的過程,

(1)使用直尺和圓規(guī),補全圖形(保留作圖痕跡);

(2)完成下面的證明

證明:連接,

中,

( )(填推理的依據(jù)).

(全等三角形的 相等).

即射線平分(角平分線定義).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答下面的問題:

1)如果a2+a3,求a2+a+2015的值.

2)已知ab=﹣3,求3ba25a+5b+5的值.

3)已知a2+2ab=﹣3abb2=﹣5,求4a2+ab+b2的值.

查看答案和解析>>

同步練習冊答案