【題目】如圖:已知等邊三角形ABC,D為AC邊上的一動點,CD=nDA,連線段BD,M為線段BD上一點,∠AMD=60°,AM交BC于E.
(1)若n=1,則= . =;
(2)若n=2,求證:BM=6DM;
(3)當n=時,M為BD中點.
(直接寫結(jié)果,不要求證明)
【答案】(1)解:當n=1時,CD=DA,
∵△ABC是等邊三角形,
∴BD⊥AC,∠BAC=60°,
∴∠ADM=90°,
又∵∠AMD=60°,
∴∠MAD=30°,
∴∠BAE=∠BAC﹣∠MAD=30°,即∠BAE=∠EAD,
∴AE為△ABC的中線,
∴=1;
在△AMD中,MD=AM,(30°角所對的直角邊等于斜邊的一半)
∵∠BAM=∠ABM=30°,
∴AM=BM,
∴=2.
(2)證明:∠AMD=∠ABD+∠BAE=60°
∠CAE+∠BAE=60°
∴∠ABD=∠CAE
又∵BA=CA,∠BAD=∠ACE=60°
∴△BAD≌△ACE(ASA)
∴AD=CE∴CD=BE
作CF∥BD交AE于F,
∴===①,==②,
∴①×②得== ,
∴BM=6DM.
(3)解:∵M為BD中點,
∴BM=MD,
∵△BAD≌△ACE(ASA)
∴AD=CE
∴CD=BE
∵△AMD∽△ACE,△BME∽△BCD
∴AD=③,DC=④,
③④得CD=AD,
∴n= .
【解析】此題為考查三角形中線段的倍數(shù)關(guān)系,相關(guān)知識點的綜合應用能力,解題關(guān)鍵在如何作輔助線.
(1)CD=nDA,當n=1時,CD=DA,據(jù)等邊三角形ABC的三線合一,可以得出∠BDA=90°,由∠AMD=60°,可得∠EAD=30°,
又∠BAC=60°,可得∠BAE=30°,AE為∠BAC的角平分線.依據(jù)三線合一可得BE=EC.容易得AM=2MD,AM=BM.問題得到解決.
(2)若n=2,則CD=2DA,△ABC是等邊三角形,∠AMD=60°,可證明△BAD≌△ACE,得AD=CE,CD=BE;作輔助線CF∥BD交AE于F,可得===①,==②,觀察①②的乘積,可得BM、DM的數(shù)量關(guān)系.
(3)由M為BD中點,可知BM=MD.由∠AMD=60°,△ABC為等邊三角形,可得△AMD∽△ACE,△BME∽△BCD,由相似三角形對應邊成比例,可得AD=,DC=,運用比例的性質(zhì)合理變形,問題可求.
【考點精析】本題主要考查了等邊三角形的性質(zhì)和平行線分線段成比例的相關(guān)知識點,需要掌握等邊三角形的三個角都相等并且每個角都是60°;三條平行線截兩條直線,所得的對應線段成比例才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象交反比例函數(shù)(x>0)圖象于點A、B,交x軸于點C.
(1)求m得取值范圍;
(2)若點A的坐標是(2,﹣4),且,求m的值和一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB分別與兩坐標軸交于點A(4,0).B(0,8),點C的坐標為(2,0).
(1)求直線AB的解析式;
(2)在線段AB上有一動點P.
①過點P分別作x,y軸的垂線,垂足分別為點E,F,若矩形OEPF的面積為6,求點P的坐標.
②連結(jié)CP,是否存在點P,使與相似,若存在,求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點(﹣2,y1),(﹣1,y2),(1,y3)都在直線y=﹣3x+b上,則y1,y2,y3的值的大小關(guān)系是( )
A. y1>y2>y3 B. y1<y2<y3 C. y3>y1>y2 D. y3<y1<y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解某班同學一周的課外閱讀量,任選班上15名同學進行調(diào)查,統(tǒng)計如表,則這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( )
閱讀量(單位:本/周) | 0 | 1 | 2 | 3 |
人數(shù)(單位:人) | 1 | 4 | 6 | 4 |
A.1,2B.2,2C.4,6D.6,6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com