從-2,-1,0,1,2這5個樹種,隨機抽取一個數(shù)記為a,則使關(guān)于x的不等式組 有解,且使關(guān)于x的一元一次方程 的解為負(fù)數(shù)的概率為________.
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年湖北省隨州市九年級中考模擬數(shù)學(xué)試卷(解析版) 題型:選擇題
“只要人人都獻出一點愛,世界將變成美好的人間”.在今年的慈善一日捐活動中,濟南市某中學(xué)八年級三班50名學(xué)生自發(fā)組織獻愛心捐款活動.班長將捐款情況進行了統(tǒng)計,并繪制成了統(tǒng)計圖.根據(jù)下圖提供的信息,捐款金額的眾數(shù)和中位數(shù)分別是( )
A.20、20 B.30、20 C.30、30 D.20、30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年甘肅省張掖市九年級四月份模擬考試數(shù)學(xué)試卷(解析版) 題型:選擇題
下列運算正確的是( )
A.3a+2a=5a2 B.x2-4=(x+2)(x-2)
C.(x+1)2=x2+1 D.(2a)3=6a3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(重慶卷)數(shù)學(xué)(解析版) 題型:解答題
某校七年級(1)班班主任對本班學(xué)生進行了“我最喜歡的課外活動”的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據(jù)調(diào)查結(jié)果發(fā)現(xiàn)該班每個學(xué)生都進行了等級且只登記了一種自己最喜歡的課外活動.班主任根據(jù)調(diào)查情況把學(xué)生都進行了歸類,并制作了如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:
(1)七年級(1)班學(xué)生總?cè)藬?shù)為_______人,扇形統(tǒng)計圖中D類所對應(yīng)扇形的圓心角為_____度,請補全條形統(tǒng)計圖;
(2)學(xué)校將舉行書法和繪畫比賽,每班需派兩名學(xué)生參加,A類4名學(xué)生中有兩名學(xué)生擅長書法,另兩名擅長繪畫.班主任現(xiàn)從A類4名學(xué)生中隨機抽取兩名學(xué)生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長書法,另一名擅長繪畫的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(重慶卷)數(shù)學(xué)(解析版) 題型:選擇題
如圖,在平面直角坐標(biāo)系中,菱形ABOC的頂點O在坐標(biāo)原點,邊BO在x軸的負(fù)半軸上,∠BOC=60°,頂點C的坐標(biāo)為(m,3),反比例函數(shù)的圖像與菱形對角線AO交于D點,連接BD,當(dāng)BD⊥x軸時,k的值是( )
A.6 B.-6 C.12 D.-12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(重慶卷)數(shù)學(xué)(解析版) 題型:選擇題
計算的值是( )
A.2 B.3 C. D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年初中畢業(yè)升學(xué)考試(山東青島卷)數(shù)學(xué)(解析版) 題型:填空題
如圖,平面直角坐標(biāo)系的原點O是正方形ABCD的中心,頂點A,B的坐標(biāo)分別為(1,1)(-1,1),把正方形ABCD繞原點O逆時針旋轉(zhuǎn)45°得到正方形A′B′C′D′則正方形ABCD與正方形A′B′C′D′重疊部分形成的正八邊形的邊長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省蘇州市九年級第二次模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題
(9分)【問題引入】
幾個人拎著水桶在一個水龍頭前面排隊打水,水桶有大有。麄冊撛鯓优抨牪拍苁沟每偟呐抨爼r間最短?
假設(shè)只有兩個人時,設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者之前,容易求出兩人接滿水等候(T+2t)分鐘?梢,要使總的排隊時間最短。拎小桶者應(yīng)排在拎大桶者前面。這樣,我們可以猜測,幾個人拎著水桶在一個水龍頭前面排隊打水,要使總的排隊時間最短,需將他們按水桶從小到大排隊.
規(guī)律總結(jié):
事實上,只要不按照從小到大的順序排隊,就至少有緊挨著的兩個人拎大桶者排在拎小桶者之前,仍設(shè)大桶接滿水需要T分鐘,小桶接滿水需t分鐘,并設(shè)拎大桶者開始接水時已經(jīng)等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者接滿水一共等候了(m+T+t)分鐘,兩人共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個人交換位置,即局部調(diào)整這兩個人的位置,同樣可以計算兩個人接滿水共等候了 __ ___分鐘,共節(jié)省了 _________分鐘,而其他人的等候時間未變。這說明只要存在有緊挨著的兩個人是拎大桶者在拎小桶者前,都可以這樣局部調(diào)整,從而使得總等候時間減少。這樣經(jīng)過一系列調(diào)整之后,整個隊伍都是從小到大排列,就達到最優(yōu)狀態(tài),總的排隊時間就最短.
【方法探究】
一般地,對某些涉及多個可變對象的數(shù)學(xué)問題,先對其少數(shù)對象進行調(diào)整,其他對象暫時保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標(biāo),最終使問題得到解決,這種數(shù)學(xué)思想方法就叫做局部調(diào)整法.
【實踐應(yīng)用1】
如圖1,在銳角△ABC中,AB=4,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是多少?
解析:(1)先假定N為定點,調(diào)整M到合適位置,使BM+MN有最小值(相對的).
容易想到,在AC上作AN′=AN(即作點N關(guān)于AD的對稱點N′),連接BN′交AD于M,則M點是使BM+MN有相對最小值的點.(如圖2,M點確定方法找到)
(2)再考慮點N的位置,使BM+MN最終達到最小值.
可以理解,BM+MN = BM+MN′,所以要使BM+MN′有最小值,只需使 ,此時BM+MN的最小值為 .
【實踐應(yīng)用2】
如圖,把邊長是3的正方形等分成9個小正方形,在有陰影的兩個小正方形內(nèi)(包括邊界)分別任取點P、R,與已知格點Q(每個小正方形的頂點叫做格點)構(gòu)成三角形,求△PQR的最大面積,并在圖2中畫出面積最大時的△PQR的圖形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com