【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,過點(diǎn)B作⊙O的切線,交AC的延長線于點(diǎn)F.已知OA=3,AE=2,
(1)求CD的長;
(2)求BF的長.

【答案】
(1)解:如圖,連接OC,

∵AB是直徑,弦CD⊥AB,

∴CE=DE

在直角△OCE中,OC2=OE2+CE2

32=(3﹣2)2+CE2

得:CE=2 ,

∴CD=4


(2)解:∵BF切⊙O于點(diǎn)B,

∴∠ABF=90°=∠AEC.

又∵∠CAE=∠FAB(公共角),

∴△ACE∽△AFB

即: =

∴BF=6


【解析】(1)連接OC,在△OCE中用勾股定理計(jì)算求出CE的長,然后得到CD的長.(2)根據(jù)切線的性質(zhì)得AB⊥BF,然后用△ACE∽△AFB,可以求出BF的長.
【考點(diǎn)精析】通過靈活運(yùn)用勾股定理的概念和垂徑定理,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一個(gè)邊長為a的大正方形,剪去一個(gè)邊長為b的小正方形,即圖①稱之為前世,然后再剪拼成一個(gè)新長方形如圖②稱之為今生,請你解答下面的問題:

(1)“前世圖①的面積與今生圖②新長方形的面積   ;

(2)根據(jù)圖形面積的和差關(guān)系直接寫出前世圖①的面積為:   ,標(biāo)明今生圖②新長方形的長為   、寬為   ,面積為:   

(3)“形缺數(shù)時(shí)少直觀,數(shù)缺形式少形象它體現(xiàn)了數(shù)學(xué)的數(shù)形結(jié)合思想,由(1)(2)圖形面積的計(jì)算,形象的驗(yàn)證了代數(shù)中的一個(gè)乘法公式為:   

(4)請你根據(jù)(3)題中乘法公式,計(jì)算:2.001×1.999.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“魅力數(shù)學(xué)”社團(tuán)活動(dòng)時(shí),張老師出示了如下問題:

如圖,已知四邊形ABCD中,AC平分∠DAB,∠DAB=120°,∠B與D互補(bǔ),試探究線段AB,AD,AC之間的數(shù)量關(guān)系;

小敏反復(fù)探索,不得其解,張老師提示道:“數(shù)學(xué)中常通過把一個(gè)問題特殊化來找到解題思路”,于是,小敏想,若將四邊形ABCD特殊化,看如何解決問題:

(1)特殊情況入手

添加條件:“∠B=∠D”,如圖易知在Rt△CDA中,DCA=30°,所以,寫出邊AD與AC之間的數(shù)量關(guān)系,同理可得AB與AC的數(shù)量關(guān)系,由此得AB,AD,AC之間的數(shù)量關(guān)系;

(2)解決原來問題

受到(1)的啟發(fā),在原問題上,添加輔助線,過點(diǎn)C分別作AB,AD的垂線,垂足分別為E、F,如圖,請寫出探究過程;

(3)解后反思

“一題多解”是數(shù)學(xué)解題的魅力之一,小敏在張老師的引導(dǎo)下,受探究結(jié)論的啟發(fā),結(jié)合圖中的60°角,通過構(gòu)造等邊三角形,利用三角形全等同樣解決了該問題,請?jiān)趫D中作出輔助線,并簡述你的探究過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題
(1)計(jì)算:
(2)化簡:a(3+a)﹣3(a+2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,A=36°,AB=AC,CD、BE分別是∠ACB,∠ABC的平分線,CD、BE相交于F點(diǎn),連接DE,則圖中全等的三角形有多少組( 。

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2011年5月20日是第22個(gè)中國學(xué)生營養(yǎng)日,某校社會(huì)實(shí)踐小組在這天開展活動(dòng),調(diào)查快餐營養(yǎng)情況.他們從食品安全監(jiān)督部門獲取了一份快餐的信息(如圖).根據(jù)信息,解答下列問題.
(1)求這份快餐中所含脂肪質(zhì)量;
(2)若碳水化合物占快餐總質(zhì)量的40%,求這份快餐所含蛋白質(zhì)的質(zhì)量;
(3)若這份快餐中蛋白質(zhì)和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物質(zhì)量的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-3,5),B(-2,1),C(-1,3).

1)畫出ABC關(guān)于x軸的對(duì)稱圖形A1B1C1;

2)畫出A1B1C1沿x軸向右平移4個(gè)單位長度后得到的A2B2C2

3)如果AC上有一點(diǎn)Ma,b)經(jīng)過上述兩次變換,那么對(duì)應(yīng)A2C2上的點(diǎn)M2的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABC D,E為平面內(nèi)任意一點(diǎn),連接AE,BE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△BFC.

(1)如圖1,求證:①;②.

(2)若,

① 如圖2,點(diǎn)E在正方形內(nèi),連接EC,, ,求的長;

② 如圖3,點(diǎn)E在正方形外,連接EF,若AB=6,當(dāng)C、E、F在一條直線時(shí),

AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】溫度的變化是人們在生活中經(jīng)常談?wù)摰脑掝},請你根據(jù)下圖回答下列問題:

(1)上午9時(shí)的溫度是多少?這一天的最高溫度是多少?

(2)這一天的溫差是多少?從最低溫度到最高溫度經(jīng)過了多長時(shí)間?

(3)在什么時(shí)間范圍內(nèi)溫度在下降?圖中的A點(diǎn)表示的是什么?

查看答案和解析>>

同步練習(xí)冊答案