【題目】如圖,小明要測量河內(nèi)小島B到河邊公路AD的距離,在點A處測得∠BAD=37°,沿AD方向前進150米到達點C,測得∠BCD=45°.求小島B到河邊公路AD的距離. (參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

【答案】解:過B作BE⊥CD垂足為E,
設BE=x米,
在Rt△ABE中,tanA= ,
AE= = = x,
在Rt△ABE中,tan∠BCD= ,
CE= = =x,
AC=AE﹣CE,
x﹣x=150,
x=450.
答:小島B到河邊公路AD的距離為450米.
【解析】過B作BE⊥CD垂足為E,設BE=x米,再利用銳角三角函數(shù)關系得出AE= x,CE=x,根據(jù)AC=AE﹣CE,得到關于x的方程,即可得出答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=AC.

1)如圖1,如果∠BAD=30°,ADBC上的高,AD=AE,則∠EDC=_____度;

2)如圖2,如果∠BAD=40°,ADBC上的高,AD=AE,則∠EDC=_______度;

3)思考:通過以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關系?請用式子表示:____________________.

4)如圖3,如果AD不是BC上的高,AD=AE,是否仍有上述關系?如有,請你寫出來,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在方格紙中,每個小方格的邊長均為1個長度單位,三角形ABC的三個頂點和點P都在小方格的頂點上.要求:①將三角形ABC平移,使點P落在平移后的三角形內(nèi)部;②平移后的三角形的頂點在方格的頂點上.請你在圖甲和圖乙中分別畫出符合要求的一個示意圖,并寫出平移的方法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列各式

x1)(x+1)=x21

x1)(x2+x+1)=x31

x1)(x3+x2+x+1)=x41

1)根據(jù)以上規(guī)律,則(x1)(x6+x5+x4+x3+x2+x+1)=   

2)你能否由此歸納出一般規(guī)律(x1)(xn+xn1+……+x+1)=   ;

3)根據(jù)以上規(guī)律求32018+32017+32016+…32+3+1的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某景點的門票價格如表:

購票人數(shù)/

1~50

51~100

100以上

每人門票價/

12

10

8

某校七年級(1)、(2)兩班計劃去游覽該景點,其中(1)班人數(shù)少于50人,(2)班人數(shù)多于50人且少于100人,如果兩班都以班為單位單獨購票,則一共支付1118元;如果兩班聯(lián)合起來作為一個團體購票,則只需花費816元.

(1)兩個班各有多少名學生?

(2)團體購票與單獨購票相比較,兩個班各節(jié)約了多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC 平分∠BAD, C 點作 CEAB E并且 2AEAB+AD,則下列結(jié)論:

ABAD+2BE;②∠DAB+DCB=180°;CDCB;SABCSACD+SBCE,其中不正確的結(jié)論個數(shù)有

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=(m+1)x2|m|n+4.

(1)當mn為何值時,此函數(shù)是一次函數(shù)?

(2)當mn為何值時,此函數(shù)是正比例函數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義,如圖1,點M,N把線段AB分割成AM,MNBN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N為線段AB的勾股分割點.

(1)已知點M,N是線段AB的勾股分割點,若AM=3,MN=5,求BN的長

(2)如圖2,在RtABC中,AC=BC,點M,N在斜邊AB上,∠MCN=45°,求證:點M,N是線段AB的勾股分割點;陽陽在解決第(2)小題時遇到了困難,陳老師對陽陽說:要證明勾股分割點,則需設法構(gòu)造直角三角形,你可以把CBN繞點C逆時針旋轉(zhuǎn)90度試試,請根據(jù)陳老師的提示完成證明過程.

(3)如圖3,C是線段AB上的一定點,請在BC上畫一點D,使C、D是線段AB的勾股分割點

(要求:完成尺規(guī)作圖,保留作圖痕跡,并在右側(cè)分步寫出作圖步驟)

查看答案和解析>>

同步練習冊答案