【題目】如圖,AB為⊙O的直徑,點(diǎn)C為⊙O上的一點(diǎn),點(diǎn)D是 的中點(diǎn),過(guò)D作⊙O的切線交AC于E,DE=3,CE=1.
(1)求證:DE⊥AC;
(2)求⊙O的半徑.
【答案】
(1)證明:連接AD,
∵DE是⊙O的切線,
∴∠ODE=90°,
∵D是 的中點(diǎn),
∴ = ,
∴∠CAD=∠OAD,
∵OA=OD,
∴∠ODA=∠OAD,
∴∠CAD=∠ODA,
∴AE∥OD,
∴∠AED=180°﹣∠ODE=90°,
∴DE⊥AC
(2)解:作OF⊥AC于F,
則AF=CF,四邊形OFED是矩形,
∴OF=ED=3,OD=EF,
設(shè)⊙O的半徑為R,則AF=CF=R﹣1,
在Rt△AOF中,AF2+OF2=OA2,
∴(R﹣1)2+32=R2,
解得R=5,
即⊙O的半徑為5.
【解析】(1)連接AD,由DE是⊙O的切線,得到∠ODE=90°,根據(jù)等腰三角形的性質(zhì)得到∠ODA=∠OAD,等量代換得到∠CAD=∠ODA,根據(jù)平行線的判定 定理得到AE∥OD,于是得到結(jié)論;(2)作OF⊥AC于F,推出四邊形OFED是矩形,根據(jù)矩形的性質(zhì)得到OF=ED=3,OD=EF,設(shè)⊙O的半徑為R,則AF=CF=R﹣1,根據(jù)勾股定理列方程即可得到結(jié)論.
【考點(diǎn)精析】本題主要考查了圓心角、弧、弦的關(guān)系和切線的性質(zhì)定理的相關(guān)知識(shí)點(diǎn),需要掌握在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等;在同圓或等圓中,同弧等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)假設(shè)每臺(tái)冰箱降價(jià)x元,商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)是y元,請(qǐng)寫(xiě)出y與x之間的函數(shù)表達(dá)式;(不要求寫(xiě)自變量的取值范圍)
(2)商場(chǎng)要想在這種冰箱銷(xiāo)售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知相交直線AB和CD及另一直線MN,如果要在MN上找出與AB,CD距離相等的點(diǎn),則這樣的點(diǎn)至少有_____個(gè),最多有_____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列大棚蔬菜種植情況統(tǒng)計(jì)圖,回答問(wèn)題:
(1)填上扇形統(tǒng)計(jì)圖中括號(hào)中的數(shù)據(jù);
(2)哪種蔬菜種植面積最大?
(3)哪兩種蔬菜種植面積較接近?
(4)已知豆角種了27公頃,種植蔬菜的總面積是多少公頃?種植西紅柿多少公頃?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),共享單車(chē)逐漸成為高校學(xué)生喜愛(ài)的“綠色出行”方式之一,自2016年國(guó)慶后,許多高校均投放了使用手機(jī)支付就可隨取隨用的共享單車(chē).某高校為了解本校學(xué)生出行使用共享單車(chē)的情況,隨機(jī)調(diào)查了某天部分出行學(xué)生使用共享單車(chē)的情況,并整理成如下統(tǒng)計(jì)表.
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 11 | 15 | 23 | 28 | 18 | 5 |
(1)這天部分出行學(xué)生使用共享單車(chē)次數(shù)的中位數(shù)是 ,眾數(shù)是 ,該中位數(shù)的意義是 ;
(2)這天部分出行學(xué)生平均每人使用共享單車(chē)約多少次?(結(jié)果保留整數(shù))
(3)若該校某天有1500名學(xué)生出行,請(qǐng)你估計(jì)這天使用共享單車(chē)次數(shù)在3次以上(含3次)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D為△ABC內(nèi)的一點(diǎn),∠ADB=120°,∠ADC=90°,將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得△ACE,連接DE.
(1)求證:AD=DE;
(2)求∠DCE的度數(shù);
(3)若BD=1,求AD,CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)邊長(zhǎng)為1的等邊△ABC的邊AB上一點(diǎn)P,作PE⊥AC于E,Q為BC延長(zhǎng)線上一點(diǎn),當(dāng)PA=CQ時(shí),連PQ交AC邊于D,則DE的長(zhǎng)為( )
A. B. C. D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長(zhǎng);
(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com