【題目】如圖,在東西方向的海岸線l上有一長(zhǎng)為1千米的碼頭MN,在碼頭西端M的正西方向30 千米處有一觀察站O.某時(shí)刻測(cè)得一艘勻速直線航行的輪船位于O的北偏西30°方向,且與O相距千米的A處;經(jīng)過(guò)40分鐘,又測(cè)得該輪船位于O的正北方向,且與O相距20千米的B處.
(1)求該輪船航行的速度;
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):,)
【答案】解:(1)過(guò)點(diǎn)A作AC⊥OB于點(diǎn)C。由題意,得
OA=千米,OB=20千米,∠AOC=30°。
∴(千米)。
∵在Rt△AOC中
OC=OAcos∠AOC=(千米),
∴BC=OC﹣OB=30﹣20=10(千米)。
∴在Rt△ABC中,(千米)。
∴輪船航行的速度為:(千米/時(shí))。
(2)如果該輪船不改變航向繼續(xù)航行,不能行至碼頭MN靠岸。理由是:
延長(zhǎng)AB交l于點(diǎn)D。
∵AB=OB=20(千米),∠AOC=30°,
∴∠OAB=∠AOC=30°,∴∠OBD=∠OAB+∠AOC=60°.
∴在Rt△BOD中,OD=OBtan∠OBD=20×tan60°=(千米)。
∵OD==ON,
∴該輪船不改變航向繼續(xù)航行,不能行至碼頭MN靠岸。
【解析】(1))過(guò)點(diǎn)A作AC⊥OB于點(diǎn)C.可知△ABC為直角三角形.根據(jù)銳角三角函數(shù)定義和勾股定理解答。
(2)延長(zhǎng)AB交l于D,比較OD與ON的大小即可得出結(jié)論。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次男子馬拉松長(zhǎng)跑比賽中,隨機(jī)抽得12名選手所用的時(shí)間(單位:分鐘)得到如下樣本數(shù)據(jù):140 146 143 175 125 164 134 155 152 168 162 148
(1)計(jì)算該樣本數(shù)據(jù)的中位數(shù)和平均數(shù);
(2)如果一名選手的成績(jī)是147分鐘,請(qǐng)你依據(jù)樣本數(shù)據(jù)的中位數(shù),推斷他的成績(jī)?nèi)绾危?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的頂點(diǎn)分別在軸的正半軸上,點(diǎn)在反比例函數(shù)的第一象限內(nèi)的圖像上,,動(dòng)點(diǎn)在軸的上方,且滿足.
(1)若點(diǎn)在這個(gè)反比例函數(shù)的圖像上,求點(diǎn)的坐標(biāo);
(2)連接,求的最小值;
(3)若點(diǎn)是平面內(nèi)一點(diǎn),使得以為頂點(diǎn)的四邊形是菱形,則請(qǐng)你直接寫出滿足條件的所有點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖D、E、F分別在△ABC的三邊上,BD=AB,BE:EC=1:2,AC的長(zhǎng)度是FC的3倍,四邊形ADEF的面積是24,則△EFC的面積是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,∠A=36°,∠ABC的平分線交AC于D,
(1)求證:△ABC∽△BCD;
(2)若BC=2,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲開(kāi)車從距離B市100千米的A市出發(fā)去B市,乙從同一路線上的C市出發(fā)也去往B.市,二人離A市的距離與行駛時(shí)間的函數(shù)圖像如圖所示(y代表距離,x代表時(shí)間)
(1)C市離A市的距離是_________千米;
(2)甲的速度是________千米∕小時(shí),乙的速度是___________千米∕小時(shí);
(3)________小時(shí),甲追上乙;
(4)試分別寫出甲、乙離開(kāi)A市的距離y(千米)與行駛時(shí)間x(時(shí))之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,AC=10,BD=6,則邊長(zhǎng)AB,AD的可能取值為( ).
A.AB=4,AD=4B.AB=4,AD=7C.AB=9,AD=2D.AB=6,AD=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,互相垂直的兩條公路AM、AN旁有一矩形花園ABCD,其中AB=30米,AD=20米.現(xiàn)欲將其擴(kuò)建成一個(gè)三角形花園APQ,要求P在射線AM上,Q在射線AN上,且PQ經(jīng)過(guò)點(diǎn)C.
(1)DQ=10米時(shí),求△APQ的面積.
(2)當(dāng)DQ的長(zhǎng)為多少米時(shí),△APQ的面積為1600平方米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com