【題目】如圖,直線AB與半徑為4的⊙O相切于點(diǎn)C,點(diǎn)D在⊙O上,連接CD,DE,且∠EDC30°,弦EFAB,則EF的長為_____

【答案】4

【解析】

連接OCOE.根據(jù)一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半,可知∠EOC的度數(shù);再根據(jù)切線的性質(zhì)定理,圓的切線垂直于經(jīng)過切點(diǎn)的半徑,可知OCAB;又EFAB,可知OCEF,最后由勾股定理可將EF的長求出.

解:連接OEOC,且OCEF的交點(diǎn)為M

∵∠EDC30°,

∴∠COE60°

AB與⊙O相切,

OCAB,

又∵EFAB,

OCEF,即EOM為直角三角形.

RtEOM中,EMsin60°×OE ×42

EF2EM,

EF4

故答案為4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測量學(xué)校旗桿AB的高度,小明從旗桿正前方6米處的點(diǎn)C出發(fā),沿坡度為i1的斜坡CD前進(jìn)2米到達(dá)點(diǎn)D,在點(diǎn)D處放置測角儀DE,測得旗桿頂部A的仰角為30°,量得測角儀DE的高為1.5米.A、B、CD、E在同一平面內(nèi),且旗桿和測角儀都與地面垂直.

(1)求點(diǎn)D的鉛垂高度(結(jié)果保留根號(hào))

(2)求旗桿AB的高度(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系xOy 中,拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(-1,0) 、B(3,0) 兩點(diǎn),且與y軸交于點(diǎn)C

.

(1)求拋物線的表達(dá)式;

(2)如圖②,用寬為4個(gè)單位長度的直尺垂直于x軸,并沿x軸左右平移,直尺的左右兩邊所在的直線與拋物線相交于P、 Q兩點(diǎn)(點(diǎn)P在點(diǎn)Q的左側(cè)),連接PQ,在線段PQ上方拋物線上有一動(dòng)點(diǎn)D,連接DP、DQ.

①若點(diǎn)P的橫坐標(biāo)為,求DPQ面積的最大值,并求此時(shí)點(diǎn)D 的坐標(biāo);

②直尺在平移過程中,DPQ面積是否有最大值?若有,求出面積的最大值;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是線段上一點(diǎn),,以點(diǎn)為圓心,的長為半徑作⊙,過點(diǎn)的垂線交⊙,兩點(diǎn),點(diǎn)在線段的延長線上,連接交⊙于點(diǎn),以,為邊作

1)求證:是⊙的切線;

2)若,求四邊形與⊙重疊部分的面積;

3)若,,連接,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了對(duì)學(xué)生進(jìn)行革命傳統(tǒng)教育,紅旗中學(xué)開展了“清明節(jié)祭掃”活動(dòng).全校學(xué)生從學(xué)校同時(shí)出發(fā),步行米到達(dá)烈士紀(jì)念館.學(xué)校要求九班提前到達(dá)目的地,做好活動(dòng)的準(zhǔn)備工作.行走過程中,九(1)班步行的平均速度是其他班的倍,結(jié)果比其他班提前分鐘到達(dá).分別求九(1)班、其他班步行的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在運(yùn)動(dòng)會(huì)前夕,光明中學(xué)都會(huì)購買籃球、足球作為獎(jiǎng)品.若購買6個(gè)籃球和8個(gè)足球共花費(fèi)1700元,且購買一個(gè)籃球比購買一個(gè)足球多花50元.

1)求購買一個(gè)籃球,一個(gè)足球各需多少元;

2)今年學(xué)校計(jì)劃購買這種籃球和足球共10個(gè),恰逢商場在促銷活動(dòng),籃球打九折,足球打八五折,若此次購買兩種球的總費(fèi)用不超過1150元,則最多可購買多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十八大以來,某校已舉辦五屆校園藝術(shù)節(jié).為了弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,每屆藝術(shù)節(jié)上都有一些班級(jí)表演經(jīng)典誦讀、民樂演奏、歌曲聯(lián)唱、民族舞蹈等節(jié)目.小穎對(duì)每屆藝術(shù)節(jié)表演這些節(jié)目的班級(jí)數(shù)進(jìn)行統(tǒng)計(jì),并繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

(1)五屆藝術(shù)節(jié)共有________個(gè)班級(jí)表演這些節(jié)日,班數(shù)的中位數(shù)為________,在扇形統(tǒng)計(jì)圖中,第四屆班級(jí)數(shù)的扇形圓心角的度數(shù)為________;

(2)補(bǔ)全折線統(tǒng)計(jì)圖;

(3)第六屆藝術(shù)節(jié),某班決定從這四項(xiàng)藝術(shù)形式中任選兩項(xiàng)表演(“經(jīng)典誦讀、民樂演奏、歌曲聯(lián)唱、民族舞蹈分別用,,,表示).利用樹狀圖或表格求出該班選擇兩項(xiàng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下敘述中,其中正確的有_________(請(qǐng)寫出所有正確敘述的序號(hào))

1)若等腰三角形的一個(gè)外角為,則它的底角為

2)“趙爽弦圖”是由于四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形(如圖所示)。小亮同學(xué)隨機(jī)地在大正方形及其內(nèi)部區(qū)域投針,若直角三角形的兩條直角邊的長分別是21,則針扎到小正方形(陰影)區(qū)域的概率是

3)已知關(guān)于的方程的解是正數(shù),則;

4)已知正比例函數(shù)反比例函數(shù)構(gòu)造一個(gè)新函數(shù)其圖象如圖所示.(因其圖象似雙鉤,我們稱之為“雙鉤函數(shù)”).則它有下列一些性質(zhì): ①該函數(shù)的圖象是中心對(duì)稱圖形;②當(dāng)時(shí),該函數(shù)在時(shí)取得最大值-2;③的值不可能為1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=4M、N在對(duì)角線AC上,且AM=CN,EF分別是AD、BC的中點(diǎn).

1)求證:△ABM≌△CDN;

2)點(diǎn)G是對(duì)角線AC上的點(diǎn),∠EGF=90°,求AG的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案