【題目】邊長為6的等邊△ABC中,點P從點A出發(fā)沿射線AB方向移動,同時點Q從點B出發(fā),以相同的速度沿射線BC方向移動,連接AQ、CP,直線AQ、CP相交于點D.
(1)如圖①,當點P、Q分別在邊AB、BC上時,
①連接PQ,當△BPQ是直角三角形時,AP等于_____;
②∠CDQ的大小是否隨P,Q的運動而變化?如果不會,請求出∠CDQ的度數(shù);如果會,請說明理由;
(2)當P、Q分別在邊AB、BC的延長線上時,在圖②中畫出點D,并直接寫出∠CDQ的度數(shù).
【答案】(1)①2或4;②60°;(2)120°.
【解析】分析:
(1)①如圖3,由題意可知∠B=60°,然后分∠PQB=90°和∠QPB=90°兩種情況結(jié)合已知條件進行解答即可;②由已知條件易證△ABQ≌△CAP,由此可得∠BAQ=∠ACP,從而可得∠CDQ=∠DAC+∠ACP=∠DAC+∠BAQ=∠CAB=60°,由此可得∠CDQ的大小不隨點P、Q的運動而改變;
(2)如圖4,由題意易證△ABQ≌△CAP,從而可得∠Q=∠P,結(jié)合∠P+∠BCP=60°可得∠Q+∠DCQ=60°,從而可得此時∠CDQ=120°.
詳解:
(1)如圖3,連接PQ,
①∵△ABC是等邊三角形,
∴∠B=60°,
由題意得,AP=BQ,
當∠PQB=90°時,BQ=BP,即AP=(6﹣AP)
解得,AP=2,
當∠QPB=90°時,BQ=2BP,即AP=2(6﹣AP)
解得,AP=4,
綜上所述,當AP=2或4時,△BPQ是直角三角形,
故答案為:2或4;
②∠CDQ的大小不變
∵P、Q用時出發(fā),速度相同,所以AP=BQ,
∵△ABC是等邊三角形,
∴BA=AC,∠B=∠CAP=60°,
在△ABQ和△CAP中,
BA=AC,∠B=∠APC,BQ=AP,
∴△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∴∠CDQ=∠DAC+∠ACP=∠DAC+∠BAQ=∠CAB=60°;
(2)如圖4,∠CDQ=120°,理由如下:
∵△ABC是等邊三角形,
∴BA=AC,∠ABC=∠CAP=60°,
在△ABQ和△CAP中,
BA=AC,∠ABQ=∠CAP,BQ=AP,
∴△ABQ≌△CAP,
∴∠Q=∠P,
∵∠P+∠BCP=60°,
∴∠Q+∠DCQ=60°,
∴∠CDQ=120°.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:我國數(shù)學家華羅庚在一次出國訪問途中,看到飛機上:鄰座的乘客閱讀的雜志上有一道智力題,求59319的立方根,華羅庚脫口而擊.眾人驚命,忙問計算奧妙.你知道怎樣迅速準確地計算出結(jié)果的嗎?諾按照下面的分析試一試
(1)由103=1000,1003=100000,可知是 位數(shù);
(2)由59319的個位數(shù)是9,可知的個位數(shù)是 ;
(3)如果劃去59319后面的三位319得到59,而33=27,43=64,由此確定的十位數(shù)是 .
請應用以上方法計算:= . =
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點E、F,CE=2,連接CF,以下結(jié)論:①△ABF≌△CBF;②點E到AB的距離是2;③tan∠DCF= ;④△ABF的面積為.其中一定成立的有幾個( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解初中各年級學生每天的平均睡眠時間(單位:h,精確到1 h),抽樣調(diào)查了部分學生,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息,回答下列問題:
(1)求出扇形統(tǒng)計圖中百分數(shù)的值為_______,所抽查的學生人數(shù)為______;
(2)求出平均睡眠時間為8小時的人數(shù),并補全條形圖;
(3)求出這部分學生的平均睡眠時間的平均數(shù);
(4)如果該校共有學生1200名,請你估計睡眠不足(少于8小時)的學生數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,D為⊙O上一點,以AD為斜邊作△ADC,使∠C=90°,∠CAD=∠DAB
(1)求證:DC是⊙O的切線;
(2)若AB=9,AD=6,求DC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個邊長分別為a、b(>)的正方形紙片疊放在一起.(用含有a、b的代數(shù)式表示問題的結(jié)果)
⑴請用至少兩種方法求出圖中陰影部分的面積;
⑵ 由面積相等,你發(fā)現(xiàn)了怎樣的等量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】端午節(jié)吃粽子是中華民族的傳統(tǒng)習慣.農(nóng)歷五月初五早晨,小王的媽媽用不透明袋子裝著一些粽子(粽子除食材不同外,其他一切相同),其中糯米粽兩個,還有一些薯粉粽,現(xiàn)小王從中任意拿出一個是糯米粽的概率為.
(1)求袋子中薯粉粽的個數(shù);
(2)小王第一次任意拿出一個粽子(不放回),第二次再拿出一個粽子,請你用樹形圖或列表法,求小王兩次拿到的都是薯粉粽的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形和四邊形為正方形,點在線段上,點在同一直線上,連接,并延長交于點.
(1)求證:.
(2)若,,求線段的長.
(3)設,,當點H是線段GC的中點時,則與滿足什么樣的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關(guān)系式;
(2)當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?
(3)為穩(wěn)定物價,有關(guān)管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com