【題目】為解決江北學(xué)校學(xué)生上學(xué)過(guò)河難的問(wèn)題,鄉(xiāng)政府決定修建一座橋,建橋過(guò)程中需測(cè)量河的寬度(即兩平行河岸AB與MN之間的距離).在測(cè)量時(shí),選定河對(duì)岸MN上的點(diǎn)C處為橋的一端,在河岸點(diǎn)A處,測(cè)得∠CAB=30°,沿河岸AB前行30米后到達(dá)B處,在B處測(cè)得∠CBA=60°,請(qǐng)你根據(jù)以上測(cè)量數(shù)據(jù)求出河的寬度.(參考數(shù)據(jù):≈1.41,≈1.73,結(jié)果保留整數(shù))
【答案】13米
【解析】
試題分析:如圖,過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,通過(guò)解直角△ACD和直角△BCD來(lái)求CD的長(zhǎng)度.
解:如圖,過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,
設(shè)CD=x.
∵在直角△ACD中,∠CAD=30°,
∴AD==x.
同理,在直角△BCD中,BD==x.
又∵AB=30米,
∴AD+BD=30米,即x+x=30.
解得x=13.
答:河的寬度的13米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x+a﹣2=0.
(1)若該方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;
(2)設(shè)方程兩根為x1,x2是否存在實(shí)數(shù)a,使?若存在求出實(shí)數(shù)a,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)多邊形的每個(gè)內(nèi)角都為108°,則它的邊數(shù)為 ( )
A. 5 B. 8 C. 6 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)為30,寬為a的矩形紙片(15<a<30),如圖那樣折一下,剪下一個(gè)邊長(zhǎng)等于矩形寬度的正方形(稱(chēng)為第一次操作);再把剩下的矩形如圖那樣折一下,剪下一個(gè)邊長(zhǎng)等于此時(shí)矩形寬度的正方形(稱(chēng)為第二次操作);如此反復(fù)操作下去.若在第n次操作后,剩下的矩形為正方形,則操作終止.當(dāng)n=3時(shí),a的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線(xiàn),E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線(xiàn)交BE的延長(zhǎng)線(xiàn)于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD內(nèi)的一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3,則∠BE′C= 度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com