【題目】如圖,Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于E,OD⊥BC交⊙O于D,DE交BC于F,點(diǎn)P為CB延長線上的一點(diǎn),PE延長交AC于G,PE=PF,下列4個(gè)結(jié)論:①GE=GC;②AG=GE;③OG∥BE;④∠A=∠P.其中正確的結(jié)論是_____(填寫所有正確結(jié)論的序號(hào))
【答案】①②③
【解析】連接OE,CE,
∵OE=OD,PE=PF,
∴∠OED=∠ODE,∠PEF=∠PFE,
∵OD⊥BC,
∴∠ODE+∠OFD=90°,
∵∠OFD=∠PFE,
∴∠OED+∠PEF=90°,
即OE⊥PE,
∵點(diǎn)E⊙O上,
∴PE為⊙O的切線;故①正確;
∵BC是直徑,
∴∠BEC=90°,
∴∠AEC=90°
∵∠ACB=90°,
∴AC是⊙O的切線,
∴EG=CG,
∴∠GCE=∠GEC,
∵∠GCE+∠A=90°,∠GEC+∠AEG=90°,
∴∠A=∠AEG,
∴AG=EG,
∴AG=CG,
即G為AC的中點(diǎn);故②正確;
∵OC=OB,
∴OG是△ABC的中位線,
∴OG∥AB,
即OG∥BE,故③正確;
在Rt△ABC中,∠A+∠ABC=90°,
在Rt△POE中,∠P+∠POE=90°,
∵OE=OB,
∴∠OBE=∠OEB,
但∠POE不一定等于∠ABC,
∴∠A不一定等于∠P.故④錯(cuò)誤.
故答案為①②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B在數(shù)軸上表示的數(shù)分別為-4和+16,A,B兩點(diǎn)間的距離可記為AB
(1) 點(diǎn)C在數(shù)軸上A,B兩點(diǎn)之間,且AC=BC,則C點(diǎn)對應(yīng)的數(shù)是_________
(2) 點(diǎn)C在數(shù)軸上A,B兩點(diǎn)之間,且BC=4AC,則C點(diǎn)對應(yīng)的數(shù)是_________
(3) 點(diǎn)C在數(shù)軸上,且AC+BC=30,求點(diǎn)C對應(yīng)的數(shù)?
(4) 若點(diǎn)A在數(shù)軸上表示的數(shù)是a,B表示的數(shù)是b,則AB=_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx-1與x軸、y軸分別交于B、C兩點(diǎn),OB:OC=.
(1)求B點(diǎn)的坐標(biāo)和k的值.
(2)若點(diǎn)A(x,y)是第一象限內(nèi)的直線y=kx-1上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)A運(yùn)動(dòng)過程中,試寫出△AOB的面積S與x的函數(shù)關(guān)系式;
(3)在(2)的條件下,當(dāng)點(diǎn)A運(yùn)動(dòng)到什么位置時(shí),△AOB的面積是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
如果一個(gè)三角形的三邊長分別為a,b,c,記p=,那么這個(gè)三角形的面積S=.這個(gè)公式叫“海倫公式”,它是利用三角形三條邊的邊長直接求三角形面積的公式。中國的秦九韶也得出了類似的公式,稱三斜求積術(shù),故這個(gè)公式又被稱為“海倫秦---九韶公式”完成下列問題:
如圖,在△ABC中,a=7,b=5,c=6.
(1)求△ABC的面積;
(2)設(shè)AB邊上的高為h1,AC邊上的高為h2,求h1 +h2的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖取材于我國古代數(shù)學(xué)家趙爽的《勾股圓方圖》,由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形如果大正方形的面積是13,小正方形的面積是4,直角三角形的較短直角邊為a,較長直角邊為b,那么的值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是直角三角形,∠ACB=90°.
(1)尺規(guī)作圖:作⊙C,使它與AB相切于點(diǎn)D,與AC相交于點(diǎn)E,保留作圖痕跡,不寫作法,請標(biāo)明字母.
(2)在你按(1)中要求所作的圖中,若BC=3,∠A=30°,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O為圓心,OA的長為半徑的圓交邊CD于點(diǎn)E,連接OE、AE,過點(diǎn)E作⊙O的切線交邊BC于F.
(1)求證:△ODE∽△ECF;
(2)在點(diǎn)O的運(yùn)動(dòng)過程中,設(shè)DE= :
①求的最大值,并求此時(shí)⊙O的半徑長;
②判斷△CEF的周長是否為定值,若是,求出△CEF的周長;否則,請說明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某一城市美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo).經(jīng)測算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,乙隊(duì)單獨(dú)完成這項(xiàng)工程需要90天;若由甲隊(duì)先做20天,剩下的工程由甲、乙兩隊(duì)合做完成.
(1)甲、乙兩隊(duì)合作多少天?
(2)甲隊(duì)施工一天需付工程款3.5萬元,乙隊(duì)施工一天需付工程款2萬元.若該工程計(jì)劃在70天內(nèi)完成,在不超過計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成該工程省錢?還是由甲乙兩隊(duì)全程合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)上書城“五一·勞動(dòng)節(jié)”期間在特定的書目中舉辦特價(jià)促銷活動(dòng),有A、B、C、D四本書是小明比較中意的,但是他只打算選購兩本,求下列事件的概率:
(1)小明購買A書,再從其余三本書中隨機(jī)選一款,恰好選中C的概率是_________;
(2)小明隨機(jī)選取兩本書,請用樹狀圖或列表法求出他恰好選中A、C兩本的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com