精英家教網 > 初中數學 > 題目詳情
如圖,四邊形OABC是矩形,點A、C的坐標分別為(3,0)、(0,1),點D是線段BC上的動點(與端點B、C不重合),過點D作直線交折線OAB于點E.  
(1)記的面積為S,求S與b的函數關系式;
(2)當點E在線段OA上時,若矩形OABC關于直線DE的對稱圖形為四邊形,DE=,試探究四邊形與矩形OABC的重疊部分的面積是否發(fā)生變化,若不變,求出該重疊部分的面積;若改變,請說明理由。
解:(1)由題意得B(3,1).若直線經過點A(3,0)時,則b=;
若直線經過點B(3,1)時,則b=;
若直線經過點C(0,1)時,則b=1。
①若直線與折線OAB的交點在OA上時,即1<b≤,如圖1

此時E(2b,0)
∴S=OE×CO=×2b×1=b
②若直線與折線OAB的交點在BA上時,即<b<,如圖2

此時E(3,),D(2b-2,1)
∴S=
= 3-[(2b-1)×1+×(5-2b)·()+×3()]


(2)如圖3,設O1A1與CB相交于點M,OA與C1B1相交于點N,則矩形OA1B1C1與矩形OABC的重疊部分的面積即為四邊形DNEM的面積。

由題意知,DM∥NE,DN∥ME,
∴四邊形DNEM為平行四邊形
根據軸對稱知,∠MED=∠NED
又∠MDE=∠NED,
∴∠MED=∠MDE,
∴MD=ME,
∴平行四邊形DNEM為菱形.
過點D作DH⊥OA,垂足為H,
由題易知,DE=,DH=1,∴HE=2,設菱形DNEM 的邊長為a,
則在Rt△DHM中,由勾股定理知:,∴
=NE·DH=
∴矩形OA1B1C1與矩形OABC的重疊部分的面積不發(fā)生變化,面積始終為
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,四邊形OABC為直角梯形,BC∥OA,∠O=90°,OA=4,BC=3,OC=4.點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達終點時,另一個動點也隨之停止運精英家教網動.過點N作NP⊥OA于點P,連接AC交NP于Q,連接MQ. 
(1)點
 
(填M或N)能到達終點;
(2)求△AQM的面積S與運動時間t的函數關系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形OABC是一張放在平面直角坐標系中的正方形紙片.點O與坐標原點重合,點A在x軸上,點C在y軸上,OC=4,點E為BC的中點,點N的坐標為(3,0),過點N且平行于y軸的直線MN與EB交于點M.現將紙片折疊,使頂點C落精英家教網在MN上,并與MN上的點G重合,折痕為EF,點F為折痕與y軸的交點.
(1)求點G的坐標;
(2)求折痕EF所在直線的解析式;
(3)設點P為直線EF上的點,是否存在這樣的點P,使得以P,F,G為頂點的三角形為等腰三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形OABC為正方形,點A在x軸上,點C在y軸上,點B(8,8),點P在邊OC上,點M在邊AB上.把四邊形OAMP沿PM對折,PM為折痕,使點O落在BC邊上的點Q處.動點E從點O出發(fā),沿OA邊以每秒1個單位長度的速度向終點A運動,運動時間為t,同時動點F從點O出發(fā),沿OC邊以相同的速度向終點C運動,當點E到達點A時,E、F同時停止運動.
(1)若點Q為線段BC邊中點,直接寫出點P、點M的坐標;
(2)在(1)的條件下,設△OEF與四邊形OAMP重疊面積為S,求S與t的函數關系式;
(3)在(1)的條件下,在正方形OABC邊上,是否存在點H,使△PMH為等腰三角形,若存在,求出點H的坐標,若不存在,請說明理由;
(4)若點Q為線段BC上任一點(不與點B、C重合),△BNQ的周長是否發(fā)生變化,若不發(fā)生變化,求出其值,若發(fā)生變化,請說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•呼倫貝爾)如圖,四邊形OABC是邊長為2的正方形,反比例函數y=
k
x
的圖象過點B,則k的值為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

附加題:如圖,四邊形OABC為直角梯形,已知AB∥OC,BC⊥OC,A點坐標為(3,4),AB=6,若動點P沿著O→A→B→C的方向運動(不包括O點和C點),P點運動路程為S,下列語句中正確的個數精英家教網是( 。
(1)直線OA的函數解析式為y=
4
3
x

(2)梯形OABC的周長為24;
(3)若點P在線段AB上時,P點的坐標為(S-5,4)
(4)若點P在線段BC上時,P點的坐標為(9,15-S)
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習冊答案