【題目】如圖,⊙O的半徑為2,O到頂點A的距離為5,點B在⊙O上,點P是線段AB的中點,若B在⊙O上運動一周.
(1)點P的運動路徑是一個圓;
(2)△ABC始終是一個等邊三角形,直接寫出PC長的取值范圍.
【答案】(1)見解析;(2)≤PC≤
【解析】
(1)連接OA、OB,取OA的中點H,連接OB,HP,則HP是△ABO的中位線,得出HP=OB=1,即P點到H點的距離固定為1,即可得出結論;
(2)由等邊三角形的性質和直角三角形的性質分別求出PC的最小值和最大值即可.
(1)解:連接OA、OB,取OA的中點H,連接HP,如圖1所示:
則HP是△ABO的中位線,
∴HP=OB=1,
∴P點到H點的距離固定為1,
∴B在⊙O上運動一周,點P運動的路徑是以點H為圓心,半徑為1的一個圓;
(2)解:連接AO并延長AO交⊙O于點M、N,如圖2所示:
∵△ABC是等邊三角形,點P是線段AB的中點,
∴PC⊥AB,PA=PB=AB=BC,
∴PC=PA=AB,
當點B運動到點M位置時,點P運動到點P'位置,PC最短,
∵AM=OA﹣OM=5﹣2=3,
∴AP'=AM=,
∴PC=;
當點B運動到點N位置時,點P運動到點P'位置,PC最長,
∵AN=OA+ON=5+2=7,
∴AP'=AN=,
∴PC=;
∴PC長的取值范圍是≤PC≤.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線C1:y=x2﹣2x與拋物線C2:y=ax2+bx開口大小相同、方向相反,它們相交于O,C兩點,且分別與x軸的正半軸交于點B,點A,OA=2OB.
(1)求拋物線C2的解析式;
(2)在拋物線C2的對稱軸上是否存在點P,使PA+PC的值最。咳舸嬖,求出點P的坐標,若不存在,說明理由;
(3)M是直線OC上方拋物線C2上的一個動點,連接MO,MC,M運動到什么位置時,△MOC面積最大?并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(0,2),B(2,2),C(-1,-2),拋物線F:與直線x=-2交于點P.
(1)當拋物線F經過點C時,求它的表達式;
(2)設點P的縱坐標為,求的最小值,此時拋物線F上有兩點,,且≤-2,比較與的大。
(3)當拋物線F與線段AB有公共點時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線C:y=x2+2x﹣3.
拋物線 | 頂點坐標 | 與x軸交點坐標 | 與y軸交點坐標 | |
拋物線C:y=x2+2x﹣3 | A(_____) | B(_____) | (1,0) | (0,﹣3) |
變換后的拋物線C1 | ______ | ______ | ______ | ______ |
(1)補全表中A,B兩點的坐標,并在所給的平面直角坐標系中畫出拋物線C.
(2)將拋物線C上每一點的橫坐標變?yōu)樵瓉淼?/span>2倍,縱坐標變?yōu)樵瓉淼?/span>,可證明得到的曲線仍是拋物線,(記為C1),求拋物線C1對應的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
定義:與圓的所有切線和割線都有公共點的幾何圖形叫做這個圓的關聯(lián)圖形.
問題:⊙O的半徑為1,畫一個⊙O的關聯(lián)圖形.
在解決這個問題時,小明以O為原點建立平面直角坐標系xOy進行探究,他發(fā)現(xiàn)能畫出很多⊙O的關聯(lián)圖形,例如:⊙O本身和圖1中的△ABC(它們都是封閉的圖形),以及圖2中以O為圓心的(它是非封閉的形),它們都是⊙O的關聯(lián)圖形.而圖2中以P,Q為端點的一條曲線就不是⊙O的關聯(lián)圖形.
參考小明的發(fā)現(xiàn),解決問題:
(1)在下列幾何圖形中,①⊙O的外切正多邊形;②⊙O的內接正多邊形;③⊙O的一個半徑大于1的同心圓;⊙O的關聯(lián)圖形是______(填序號).
(2)若圖形G是⊙O的關聯(lián)圖形,并且它是封閉的,則圖形G的周長的最小值是____.
(3)在圖2中,當⊙O的關聯(lián)圖形的弧長最小時,經過D,E兩點的直線為y=____.
(4)請你在備用圖中畫出一個⊙O的關聯(lián)圖形,所畫圖形的長度l小于(2)中圖形G的周長的最小值,并寫出l的值(直接畫出圖形,不寫作法).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】要建一個如圖所示的面積為300m2的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m).
(1)求圍欄的長和寬;
(2)能否圍成面積為400m2的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,圖中的小方格都是邊長為1的正方形,△ABC與△A'B'C'是以點O為位似中心的位似圖形,它們的頂點都在小正方形的頂點上.
(1)畫出位似中心點O;
(2)直接寫出△ABC與△A′B′C′的位似比_______
(3)以位似中心O為坐標原點,以格線所在直線為坐標軸建立平面直角坐標系,畫出△A′B′C′關于點O中心對稱的△A″B″C″,并直接寫出△A″B″C″各頂點的坐標._______;_______;_______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】高爾基說:“書,是人類進步的階梯.”閱讀可以豐富知識、拓展視野、充實生活等諸多益處.為了解學生的課外閱讀情況,某校隨機抽查了部分學生閱讀課外書冊數(shù)的情況,并繪制出如下統(tǒng)計圖,其中條形統(tǒng)計圖因為破損丟失了閱讀5冊書數(shù)的數(shù)據(jù).
(1)求條形圖中丟失的數(shù)據(jù),并寫出閱讀書冊數(shù)的眾數(shù)和中位數(shù);
(2)根據(jù)隨機抽查的這個結果,請估計該校1200名學生中課外閱讀5冊書的學生人數(shù);
(3)若學校又補查了部分同學的課外閱讀情況,得知這部分同學中課外閱讀最少的是6冊,將補查的情況與之前的數(shù)據(jù)合并后發(fā)現(xiàn)中位數(shù)并沒有改變,試求最多補查了多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB為10cm,弦BC為5cm,D、E分別是∠ACB的平分線與⊙O,AB的交點,P為AB延長線上一點,且PC=PE.
(1)求AC、AD的長;
(2)試判斷直線PC與⊙O的位置關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com