【題目】如圖,已知E為等腰△ABC的底邊BC上一動(dòng)點(diǎn),過E作EF⊥BC交AB于D,交CA的延長(zhǎng)線于F,問:
(1)∠F與∠ADF的關(guān)系怎樣?說(shuō)明理由;
(2)若E在BC延長(zhǎng)線上,其余條件不變,上題的結(jié)論是否成立?若不成立,說(shuō)明理由;若成立,畫出圖形并給予證明.
【答案】
(1)解:∠F=∠ADF
理由:∵AB=AC
∴∠B=∠C
∵EF⊥BC
∴∠B+∠BDE=90°,∠C+∠F=90°
∴∠BDE=∠F
∵∠ADF=∠BDE
∴∠ADF=∠F
(2)解:成立
證明:∵AB=AC
∴∠B=∠ACB
∵∠ACB=∠ECF
∴∠B=∠ECF
∵EF⊥BC
∴∠B+∠BDE=90°,∠ECF+∠F=90°
∴∠BDE=∠F
即∠ADF=∠F
【解析】由已知條件,根據(jù)等腰三角形兩底角相等及三角形兩銳角互余的性質(zhì)不難推出∠F與∠ADF的關(guān)系.
【考點(diǎn)精析】關(guān)于本題考查的等腰三角形的性質(zhì),需要了解等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB=AC,
(1)⊙O的弦AE交于BC于D.求證:ABAC=ADAE;
(2)在(1)的條件下當(dāng)弦AE的延長(zhǎng)線與BC的延長(zhǎng)線相交于點(diǎn)D時(shí),上述結(jié)論是否還成立?若成立,請(qǐng)給予證明.若不成立,請(qǐng)說(shuō)明理由.
(3)已知⊙O 的半徑2,∠ACB=40°,求BA的長(zhǎng).(sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結(jié)果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE,BE,BE⊥AE,延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.求證:
(1)FC=AD;
(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為3,以頂點(diǎn)A為原點(diǎn),且有一組鄰邊與坐標(biāo)軸重合,求出正方形ABCD各個(gè)頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】北京奧運(yùn)會(huì)期間,某旅行社組團(tuán)去北京觀看某場(chǎng)足球比賽,入住某賓館.已知該賓館一樓房間比二樓房間少5間,該旅游團(tuán)有48人,若全部安排在一樓,每間住4人,房間不夠,每間住5人,有房間沒住滿.若全部安排在二樓,每間住3人,房間不夠,每間住4人,則有房間沒住滿.你能根據(jù)以上信息確定賓館一樓有多少房間嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠1月份的產(chǎn)值為50000元,3月份的產(chǎn)值達(dá)到72000元,這兩個(gè)月的產(chǎn)值平均月增長(zhǎng)的百分率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com