【題目】閱讀下面的材料并解答后面的問題:

(閱讀)

小亮:你能求出x2+4x3的最小值嗎?如果能,其最小值是多少?

小華:能.求解過程如下:

因為x2+4x3x2+4x+443=(x2+4x+4)﹣(4+3)=(x+227

而(x+22≥0,所以x2+4x3的最小值是﹣7

1)小華的求解過程正確嗎?

2)你能否求出x25x+4的最小值?如果能,寫出你的求解過程.

【答案】1)正確;2)最小值J,過程見解析

【解析】

1)、(2)對于x2+4x3x25x+4都是同時加上且減去一次項系數(shù)一半的平方.配成一個完全平方式與常數(shù)的和,利用完全平方式為非負數(shù)的性質(zhì)得到原代數(shù)式的最小值.

解:(1)正確

2)能.過程如下:

x25x+4x2x++4=(x2,

∵(x2≥0

x25x+4的最小值是

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等邊△ABC,AB=4,以AB為直徑的半圓與BC邊交于點D,過點DDEAC,垂足為E,過點EEFAB,垂足為F,連接FD.

(1)求證:DE是⊙O的切線;

(2)EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某茶葉公司經(jīng)銷一種茶葉,每千克成本為元,市場調(diào)查發(fā)現(xiàn)在一段時間內(nèi),銷量(千克)隨銷售單價(元/千克)的變化而變化,具有關(guān)系為:,物價部門規(guī)定每千克的利潤不得超過元.設(shè)這種茶葉在這段時間內(nèi)的銷售利潤(元),解答下列問題:

的關(guān)系式;

取何值時,的值最大?并求出最大值;

當銷售利潤的值最大時,銷售額也是最大嗎?判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2-2x-3與x軸交于A、B兩點,在x軸上方的拋物線上有一點C,且△ABC的面積等于10,則C點坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于一個關(guān)于的代數(shù)式,若存在一個系數(shù)為正數(shù)關(guān)于的單項式,使 的結(jié)果是所有系數(shù)均為整數(shù)的整式,則稱單項式為代數(shù)式的“整系單項式” ,例如:

時,由于 ,故的整系單項式;

時,由于 ,故的整系單項式;

時,由于 ,故的整系單項式;

時,由于 ,故的整系單項式;

顯然,當代數(shù)式存在整系單項式時,有無數(shù)個,現(xiàn)把次數(shù)最低,系數(shù)最小的整系單項式記為 ,例如: .

閱讀以上材料并解決下列問題:

.判斷:當 時, 的整系單項式(填“是”或“不是”);

. 時, = ;

.解方程:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1a3aa29a2a4

2)﹣m2(﹣m24(﹣m3

3)(﹣82018×(﹣0.1252017

4)(﹣a2b2ab2+(﹣9a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,ADBC于點D,則下列四個結(jié)論中:

①線段AD上任意一點到點B的距離與到點C的距離相等;

②線段AD上任意一點到AB的距離與到AC的距離相等;

③若點Q是線段AD的三等分點 ,則△ACQ的面積是△ABC面積的;

④若,;

正確結(jié)論的序號是(

A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與X軸交于A、B兩點,點A在點B左側(cè),點B的坐標為(1,0),OC=3OB.

(1)求拋物線對應(yīng)的函數(shù)解析式;

(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ΔABC中,AD是高,AE、BF是角平分線,它們相交與點O,∠BAC=50°,∠C=70°,則∠DAC的度數(shù)為__________,∠BOA的度數(shù)為__________

查看答案和解析>>

同步練習冊答案