如圖①~④,△ABC依次為任意三角形、直角三角形(∠A=90°)、等腰三角形(AB=AC)、等腰直角三角形(AB=AC,∠A=90°),D、E、F均分別是△ABC各邊的中點.圖①~④中的4個四邊形ADEF分別是怎樣的特殊四邊形?證明你的結論.

答案:略
解析:

4個圖形中的四邊形ADEF分別是平行四邊形、矩形、菱形、正方形、證明略.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,等邊三角形ABC中,D、E分別是BC、AC上的點,且AE=CD.
(1)求證:AD=BE;
(2)求:∠BFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在等腰直角△ABC中,∠ABC=90°,AB=BC,AD∥BC,E是AB的中點,BE=AD.
(1)試說明:CE⊥BD;
(2)線段AC與ED之間存在什么關系?為什么?
(3)判斷△BDC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,△DEF是由△ABC平移得到的,若BC=6cm,E是BC的中點,則平移的距離是
3
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,線段AM為BC邊上的中線.動點D在直線AM上時,以CD為一邊且在CD的下精英家教網方作等邊△CDE,連接BE.
(1)填空:當點D運動到點M時,∠ACE=
 
度;
(2)當點D在線段AM上(點D不運動到點A)時,求證:△ADC≌△BEC;
(3)若AB=8,以點C為圓心,以5為半徑作⊙C與直線BE相交于點P、Q兩點,在點D運動的過程中(點D與點A重合除外),試求PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,圓內接△ABC中,AB=BC=CA,OD、OE為⊙O的半徑,OD⊥BC于點F,OE⊥AC于點G,陰影部分四邊形OFCG的面積是△ABC的面積的
 

查看答案和解析>>

同步練習冊答案