【題目】已知O是直線AB上的一點,∠COD是直角,OE平分∠BOC

1)如圖①,若∠AOC30°,求∠DOE的度數(shù).

2)在圖①中,若∠AOCα,求∠DOE的度數(shù)(用含α的代數(shù)式表示).

3)將圖①中的∠DOC繞頂點O順時針旋轉(zhuǎn)至圖②的位置,且保持射線OC在直線AB上方,在整個旋轉(zhuǎn)過程中,當(dāng)∠AOC的度數(shù)是多少時,∠COE=2DOB

【答案】115°;(2α;(360°108°

【解析】

1)根據(jù)平角的定義即可求出∠BOC,然后根據(jù)直角的定義和角平分線的定義即可求出∠DOE

2)根據(jù)平角的定義即可求出∠BOC,然后根據(jù)直角的定義和角平分線的定義即可求出∠DOE

3)設(shè)∠AOC=α,根據(jù)角平分線的定義即可求出∠COE,然后根據(jù)OD與直線AB的相對位置分類討論,分別畫出對應(yīng)的圖形,再用α表示出∠DOB即可列出方程,求出結(jié)論.

解:(1)由已知得∠BOC180°-∠AOC150°

又∵∠COD是直角,OE平分∠BOC

∴∠DOE=∠COD-∠COE=∠CODBOC90°×150°15°

2)由已知得∠BOC180°-∠AOC

(1)知∠DOE=∠CODBOC

∴∠DOE90° (180°-∠AOC)AOCα

3)設(shè)∠AOC=α,則∠BOC=180°α

OE平分∠BOC,

∴∠COE=×180°α=90°α

分兩種情況:

當(dāng)OD在直線AB上方時,∠BOD=90°α,

∵∠COE=2DOB,

90°α=290°α),

解得α=60°

當(dāng)OD在直線AB下方時,∠BOD=90°﹣(180°α90°,

∵∠COE=2DOB,

90°α=2α90°),

解得α=108°

綜上所述,當(dāng)∠AOC的度數(shù)是60°108°時,∠COE=2DOB

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中菱形ABOC的頂點O在坐標(biāo)原點,BOx軸的負半軸上,∠BOC=60°,頂點C的坐標(biāo)為m,),反比例函數(shù)的圖像與菱形對角線AO交于D,連接BD當(dāng)BDx軸時,k的值是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商場銷售一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下.若每千克漲價1元,日銷售量將減少20千克.

(1)現(xiàn)該商場要保證每天盈利6000元,同時又要使顧客得到實惠,那么每千克應(yīng)漲價多少元?

(2)每千克水果漲價多少元時,商場每天獲得的利潤最大?獲得的最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點,拋物線y=x2+bx+c經(jīng)過AB兩點,點C是拋物線與x軸的另一個交點(與A點不重合).

1)求拋物線的解析式;

2)求ABC的面積;

3)在拋物線的對稱軸上,是否存在點M,使ABM為等腰三角形?若不存在,請說明理由;若存在,求出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABMRtADN的斜邊分別為正方形的邊ABAD,其中AM=AN.

(1)求證:RtABMRtAND

(2)線段MN與線段AD相交于T,若AT=,的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,ABCD是一矩形紙片,AB=3cm,AD=4cm,MAD上一點,且AM=3cm.操作:

(1)將ABAM折過去,使ABAM重合,得折痕AN,如圖乙;

(2)將ANBBN為折痕向右折過去,得圖丙.

HD是( )cm

A. 0.5 B. 1 C. 1.5 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高校學(xué)生會發(fā)現(xiàn)同學(xué)們就餐時剩余飯菜較多,浪費嚴重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)光盤行動,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動的重要性,校學(xué)生會在某天午餐后,隨機調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖。

(1)這次被調(diào)查的同學(xué)共有 名;

(2)把條形統(tǒng)計圖補充完整;

(3)校學(xué)生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學(xué)生一餐浪費的食物可以供200人用一餐。據(jù)此估算,該校18000名學(xué)生一餐浪費的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了推動我縣三進校園活動的廣泛開展,引導(dǎo)學(xué)生走向操場,走到陽光下,積極參加體育鍛煉,學(xué)校準(zhǔn)備購買一批運動鞋供學(xué)生借用,現(xiàn)從各年級隨機抽取了部分學(xué)生的鞋號,繪制了如下的統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:

(1)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中的值為 ;

(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)為 ,中位數(shù)為 ;

(3)根據(jù)樣本數(shù)據(jù),若學(xué)校計劃購買雙運動鞋,建議購買號運動鞋 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB13,BC14,AC15,點DAC上(可與點AC重合),分別過點AC作直線BD的垂線,垂足為EF,則AE+CF的最大值為_____,最小值為_____

查看答案和解析>>

同步練習(xí)冊答案