【題目】(如圖,OABC的外接圓,圓心OAB上,且B2∠A,MOA上一點(diǎn),過MAB的垂線交AC于點(diǎn)N,交BC的延長線于點(diǎn)E,直線CFEN于點(diǎn)FEFFC.

(1)求證:CFO的切線;

(2)O的半徑為2,且ACCE,求AM的長.

【答案】(1)詳見解析;(2)3-.

【解析】試題分析:(1)連接OC,如圖,根據(jù)圓周角定理得到∠ACB=90°,則利用∠B=2∠A可計(jì)算出∠B=60°,∠A=30°,易得∠E=30°,接著由EF=FC得到∠ECF=∠E=30°,所以∠FCA=60°,加上∠OCA=∠A=30°,所以∠FCO=∠FCA+∠ACO=90°,于是可根據(jù)切線的判定得到FC是⊙O的切線;

(2)利用含30度的直角三角形三邊的關(guān)系.在RtABC中可計(jì)算出

,,所以BE=BC+CE=,然后在RtBEM中計(jì)算出 再計(jì)算AB-BM的值即可.

證明:如圖,連接OC.

∵⊙O是△ABC的外接圓,圓心OAB上,

AB是⊙O的直徑,

∴∠ACB90°.

又∵∠B2A,

∴∠B60°,A30°.

EMAB∴∠EMB90°.

RtEMB中,∠B60°

∴∠E30°.

又∵EFFC,

∴∠ECFE30°.

又∵∠ECA90°,

∴∠FCA60°.

OAOC,

∴∠OCAA30°

∴∠FCOFCAACO90°

OCCF,

FC是⊙O的切線;

(2)Rt△ABC中,∵∠ACB90°,A30°AB4,

BCAB2ACBC2.

ACCE,

CE2

BEBCCE22.

Rt△BEM中,BME90°,E30°

BMBE1,

AMABBM413.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若﹣5xm+3y2x4yn+3是同類項(xiàng),則m+n=____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:a(2ab)=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy對正方形ABCD及其內(nèi)部的每個(gè)點(diǎn)進(jìn)行如下操作:把每個(gè)點(diǎn)的橫、縱坐標(biāo)都乘同一實(shí)數(shù)a,將得到的點(diǎn)先向右平移m個(gè)單位長度,再向上平移n個(gè)單位長度(m>0,n>0),得到正方形A′B′C′D′及其內(nèi)部的點(diǎn),其中點(diǎn)A,B的對應(yīng)點(diǎn)分別為A′,B′.已知正方形ABCD內(nèi)部的一個(gè)點(diǎn)F經(jīng)過上述操作后得到的對應(yīng)點(diǎn)F′與點(diǎn)F重合,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AC=BC,C=90°,點(diǎn)DAB的中點(diǎn).

1)如圖1,若點(diǎn)E、F分別是ACBC上的點(diǎn),且AE=CF,請判別DEF的形狀,并說明理由;

2)若點(diǎn)E、F分別是CA、BC延長線上的點(diǎn),且AE=CF,則(1)中的結(jié)論是否仍然成立?請

說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(5,0),點(diǎn)B的坐標(biāo)為(32),直線經(jīng)過原點(diǎn)和點(diǎn)B,直線經(jīng)過點(diǎn)A和點(diǎn)B.

1)求直線, 的函數(shù)關(guān)系式;

2)根據(jù)函數(shù)圖像回答:不等式的解集為

3)若點(diǎn)軸上的一動(dòng)點(diǎn),經(jīng)過點(diǎn)P作直線軸,交直線于點(diǎn)C,交直線于點(diǎn)D,分別經(jīng)過點(diǎn)CD軸作垂線,垂足分別為點(diǎn)E F,得長方形CDFE.

①若設(shè)點(diǎn)P的橫坐標(biāo)為m,則點(diǎn)C的坐標(biāo)為(m ),點(diǎn)D的坐標(biāo)為(m, );(用含字母m的式子表示)

②若長方形CDFE的周長為26,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)綜合與實(shí)踐課中,老師帶領(lǐng)同學(xué)們來到婁底市郊區(qū),測算如圖所示的仙女峰的高度,李紅盛同學(xué)利用已學(xué)的數(shù)學(xué)知識設(shè)計(jì)了一個(gè)實(shí)踐方案,并實(shí)施了如下操作:先在水平地面A處測得山頂B的仰角BAC38.7°,再由A沿水平方向前進(jìn)377米到達(dá)山腳C處,測得山坡BC的坡度為10.6,請你求出仙女峰的高度(參考數(shù)據(jù):tan38.7°≈0.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天數(shù)學(xué)課上老師講了整式的加減運(yùn)算,小穎回家后拿出自己的課堂筆記,認(rèn)真地復(fù)習(xí)老師在課堂上所講的內(nèi)容,她突然發(fā)現(xiàn)一道題目:5(2a2+3ab-b2)-(-3+ab+5a2+b2)=5a2-6b2+3被墨水弄臟了,請問被墨水遮蓋住的一項(xiàng)是()

A.+14abB.+3abC.+16abD.+2ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一張矩形紙片,剪下一個(gè)正方形,剩下一個(gè)矩形,稱為第一次操作;在剩下的矩形紙片中再剪下一個(gè)正方形,剩下一個(gè)矩形,稱為第二次操作;;若在第n次操作后,剩下的矩形為正方形,則稱原矩形為n階奇異矩形.

1)如圖1,矩形ABCD中,若AB=3,BC=9,則稱矩形ABCD  階奇異矩形.

2)如圖2,矩形ABCD長為7,寬為3,它是奇異矩形嗎?如果是,請寫出它是幾階奇異矩形,并在圖中畫出裁剪線;如果不是,請說明理由.

3)已知矩形ABCD的一邊長為20,另一邊長為aa20),且它是3階奇異矩形,請畫出矩形ABCD及裁剪線的示意圖,并在圖的下方直接寫出a的值.

查看答案和解析>>

同步練習(xí)冊答案