如圖,拋物線與x軸交于A(-1,0),B (3,0)兩點(diǎn),與y軸交點(diǎn)C(0,-3)
(1)求拋物線的解析式以及頂點(diǎn)D的坐標(biāo);
(2)若M是線段BD的中點(diǎn),連接CM,猜想線段CM與線段BD之間有怎樣的數(shù)量關(guān)系,并證明你的猜想;
(3)在坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

【答案】分析:(1)設(shè)拋物線的解析式是:y=a(x+1)(x-3),把C的坐標(biāo)代入求出即可;
(2)過M作MQ⊥X軸于Q,過D作DH⊥X軸于H,根據(jù)三角形的中位線求出M的坐標(biāo),根據(jù)勾股定理求出CM、BD即可;
(3)①當(dāng)∠PAC=90°,②當(dāng)∴APC=90°時,③當(dāng)∠ACP=90°,根據(jù)相似三角形的性質(zhì)得到比例式,代入求出即可.
解答:解:(1)設(shè)拋物線的解析式是:y=a(x+1)(x-3),
把(0,-3)代入得:-3=a(0+1)(0-3),
解得:a=1,
∴y=(x+1)(x-3)=x2-2x-3=(x-1)2-4,
∴D(1,-4),
答:拋物線的解析式是y=x2-2x-3,頂點(diǎn)D的坐標(biāo)是(1,-4).

(2)線段CM與線段BD之間的數(shù)量關(guān)系是CM=BD.
證明:過M作MQ⊥x軸于Q,過D作DH⊥x軸于H,
∵D(1,-4),B(3,0),M為BD的中點(diǎn),
∴MQ=2,HQ=1,
∴OQ=1+1=2,
∴M(2,-2),
由勾股定理得:BD==2,
過M作MN⊥y軸于N,
則MN=PQ=2,CN=OC-MQ=3-2,
由勾股定理得:CM==,
∵CM=,BD=2(已求出),
∴CM=BD.

(3)坐標(biāo)軸上存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似,點(diǎn)P的坐標(biāo)是(0,0),(0,),(9,0).
點(diǎn)評:本題主要考查對用待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)的最值,相似三角形的性質(zhì)和判定,三角形的中位線,勾股定理等知識點(diǎn)的理解和掌握,綜合運(yùn)用這些性質(zhì)進(jìn)行推理和計算是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3),設(shè)拋物線的頂點(diǎn)為D.
(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo);
(2)以B、C、D為頂點(diǎn)的三角形是直角三角形嗎?為什么?
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請指出符合條件的點(diǎn)P的位置,并直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x1<x2,與y軸交于點(diǎn)C(0,-4),其中x1,x2是方程x2-4x-12=0的兩個根.
(1)求拋物線的解析式;
(2)點(diǎn)M是線段AB上的一個動點(diǎn),過點(diǎn)M作MN∥BC,交AC于點(diǎn)N,連接CM,當(dāng)△CMN的面積最大時,求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•歷下區(qū)一模)如圖,拋物線與x軸交于A(-1,0),B(4,0)兩點(diǎn),與y軸交于C(0,3),M是拋物線對稱軸上的任意一點(diǎn),則△AMC的周長最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與y軸交于點(diǎn)A(0,4),與x軸交于B、C兩點(diǎn).其中OB、OC是方程的x2-10x+16=0兩根,且OB<OC.
(1)求拋物線的解析式;
(2)直線AC上是否存在點(diǎn)D,使△BCD為直角三角形.若存在,求所有D點(diǎn)坐標(biāo);反之說理;
(3)點(diǎn)P為x軸上方的拋物線上的一個動點(diǎn)(A點(diǎn)除外),連PA、PC,若設(shè)△PAC的面積為S,P點(diǎn)橫坐標(biāo)為t,則S在何范圍內(nèi)時,相應(yīng)的點(diǎn)P有且只有1個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與x軸交于A、B(6,0)兩點(diǎn),且對稱軸為直線x=2,與y軸交于點(diǎn)C(0,-4).
(1)求拋物線的解析式;
(2)點(diǎn)M是拋物線對稱軸上的一個動點(diǎn),連接MA、MC,當(dāng)△MAC的周長最小時,求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形,如果存在,直接寫出所有滿足條件的點(diǎn)F的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案