【題目】在草莓上市的旺季,小穎和媽媽周末計劃去草莓園采摘草莓.甲、乙兩家草莓園生產(chǎn)的草莓品質(zhì)相同,每千克售價均為.甲草莓園的優(yōu)惠方案是:游客進(jìn)園需購買每人元的門票,采摘的草莓按六折收費;乙草莓園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘的草莓超過千克后,超過部分按五折收費.請你回答下列問題:

1)如果去乙草莓園采摘千克草莓,需支付多少元?

2)如果個人去甲草莓園采摘千克草莓,需支付多少元?

3)小穎和媽媽準(zhǔn)備采摘千克草莓送給朋友,哪家會更便宜?請說明理由.

【答案】1元;(2;(3)乙 ,

【解析】

1)根據(jù)題意利用有理數(shù)的混合運算即可解答;

2)根據(jù)游客進(jìn)園需購買每人元的門票,采摘的草莓按六折收費,;列出代數(shù)式即可;

3)把15千克分別代入甲乙進(jìn)行計算即可;

130×3=90元;

2個人去甲草莓園采摘千克草莓,

可得:30m+(30×0.6)x=

3)根據(jù)小穎和媽媽準(zhǔn)備采摘千克草莓送給朋友,

甲:30×2+18×15=330元,

乙:5×30+10×30×0.5=300元,

故選乙便宜30.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)有一塊四邊形空地ABCD,如圖所示,現(xiàn)計劃在這塊地上種植每平方米60元的草坪用以美化環(huán)境,施工人員測得(單位:米):AB=3BC=4,CD=12DA=13,∠B=90°,求小區(qū)種植這種草坪需多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按如圖所示的程序計算.若開始輸入的的值為18,我們發(fā)現(xiàn)第1次得到的結(jié)果為9,第2次得到的結(jié)果為14,第3次得到的結(jié)果為7.……,請你探索第2019次得到的結(jié)果為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

1
2
3
4
5
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,如果對角線ACBD相交并且相等,那么我們把這樣的四邊形稱為等角線四邊形.

1)在“平行四邊形、矩形、菱形,正方形”中, 一定是等角線四邊形(填寫圖形名稱);

2)若M、N、P、Q分別是等角線四邊形ABCD四邊AB、BC、CDDA的中點,當(dāng)對角線AC、BD還要滿足 時,四邊形MNPQ是正方形;

3)如圖2,已知△ABC中,∠ABC90°,AB4,BC3D為平面內(nèi)一點.若四邊形ABCD是等角線四邊形,且ADBD,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實踐與探索:將連續(xù)的奇數(shù) 1,35,7…排列成如下的數(shù)表,用十字框框出 5 個數(shù)(如圖)

(1)若將十字框上下左右平移,但一定要框住數(shù)列中的 5 個數(shù),若設(shè)中間的數(shù)為 a,用 a 的代數(shù)式表示十字框框住的 5 個數(shù)字之和;

(2)十字框框住的 5 個數(shù)之和能等于 285 嗎?若能,分別寫出十字框框住的 5 個數(shù);若不能,請說明理由;

(3)十字框框住的 5 個數(shù)之和能等于 365 嗎?若能,分別寫出十字框框住的 5 個數(shù);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】回答下列問題:

1)如圖所示的甲、乙兩個平面圖形能折什么幾何體?

2)由多個平面圍成的幾何體叫做多面體.若一個多面體的面數(shù)為f,頂點個數(shù)為v,棱數(shù)為e,分別計算第(1)題中兩個多面體的f+v﹣e的值?你發(fā)現(xiàn)什么規(guī)律?

3)應(yīng)用上述規(guī)律解決問題:一個多面體的頂點數(shù)比面數(shù)大8,且有50條棱,求這個幾何體的面數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在正方形ABCD外取E,連接AE、BEDE.過點AAE的垂線交DE于點P,已知AE=AP=BE=1.

(1)求證:△APD≌△AEB;

(2)連接PC,求線段PC的長度;

(3)試求正方形ABCD的面積。

查看答案和解析>>

同步練習(xí)冊答案