【題目】如圖,在平面直角坐標系xOy中,△A′B′C′由△ABC繞點P旋轉得到,則點P的坐標為

【答案】(1,﹣1)
【解析】解:連接AA′、CC′,
作線段AA′的垂直平分線MN,作線段CC′的垂直平分線EF,
直線MN和直線EF的交點為P,點P就是旋轉中心.
∵直線MN為:x=1,設直線CC′為y=kx+b,
由題意: ,∴ ,∴直線CC′為y= x+ ,∵直線EF⊥CC′,經(jīng)過CC′中點( , ),
∴直線EF為y=﹣3x+2,
,
∴P(1,﹣1).
故答案為(1,﹣1).

連接AA′,CC′,線段AA′、CC′的垂直平分線的交點就是點P. 本題考查旋轉的性質(zhì),掌握對應點連線段的垂直平分線的交點就是旋轉中心,是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商店試銷一種新商品,該商品的進價為40元/件,經(jīng)過一段時間的試銷發(fā)現(xiàn),每月的銷售量會因售價在40~70元之間的調(diào)整而不同.當售價在40~50元時,每月銷售量都為60件;當售價在50~70元時,每月銷售量與售價的關系如圖所示,令每月銷售量為y件,售價為x元/件,每月的總利潤為Q元.
(1)當售價在50~70元時,求每月銷售量為y與x的函數(shù)關系式?
(2)當該商品售價x是多少元時,該商店每月獲利最大,最大利潤是多少元?
(3)若該商店每月采購這種新商品的進貨款不低于1760元,則該商品每月最大利潤為元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,用直尺和圓規(guī)作BAD的平分線AG交BC于點E,若BF=12,AB=10,則AE的長為( )

A.16 B.15 C.14 D.13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OCDE的頂點C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線y= x2﹣3x+m與y軸相交于點A,拋物線的對稱軸與x軸相交于點B,與CD交于點K.
(1)將矩形OCDE沿AB折疊,點O恰好落在邊CD上的點F處.
①點B的坐標為(),BK的長是 , CK的長是
②求點F的坐標;
③請直接寫出拋物線的函數(shù)表達式;
(2)將矩形OCDE沿著經(jīng)過點E的直線折疊,點O恰好落在邊CD上的點G處,連接OG,折痕與OG相交于點H,點M是線段EH上的一個動點(不與點H重合),連接MG,MO,過點G作GP⊥OM于點P,交EH于點N,連接ON,點M從點E開始沿線段EH向點H運動,至與點N重合時停止,△MOG和△NOG的面積分別表示為S1和S2 , 在點M的運動過程中,S1S2(即S1與S2的積)的值是否發(fā)生變化?若變化,請直接寫出變化范圍;若不變,請直接寫出這個值.
溫馨提示:考生可以根據(jù)題意,在備用圖中補充圖形,以便作答.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點A,B的坐標分別為( ,0),(0,1),把Rt△AOB沿著AB對折得到Rt△AO′B,則點O′的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種型號油電混合動力汽車,從A地到B地燃油行駛純?nèi)加唾M用76元,從A地到B地用電行駛純電費用26元,已知每行駛1千米,純?nèi)加唾M用比純用電費用多0.5元.
(1)求每行駛1千米純用電的費用;
(2)若要使從A地到B地油電混合行駛所需的油、電費用合計不超過39元,則至少用電行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某科技館對學生參觀實行優(yōu)惠,個人票為每張6元,另有團體票可售,票價45元,每票最多限10人入館參觀.

(1)如果參觀的學生人數(shù)36人,至少應付多少元?

(2)如果參觀的學生人數(shù)為48人,至少應付多少元?

(3)如果參觀的學生人數(shù)為一個兩位數(shù)(a表示十位上的數(shù)字,b表示個位上的數(shù)字),用含a、b的代數(shù)式表示至少應付給科技館的總金額.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】臺球是一項高雅的體育運動,其中包含了許多物理、幾何學知識,圖-是一個臺球桌,目標球F與本球之間有一個G球阻擋.

(1)擊球者想通過擊打E球,讓E球先撞球臺的AB邊,經(jīng)過一次反彈后再撞擊F球,他應將E球打到AB邊上的哪一點?請在圖10-①中用尺規(guī)作出這一點H,并作出E球的運行路線;(不寫畫法,保留作圖痕跡)

(2)如圖-,現(xiàn)以D為原點,建立直角坐標系,記A(0,4),C(8,0),E(4,3),F(xiàn)(7,1),求E球按剛才方式運行到球的路線長度(忽略球的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=kx+b經(jīng)過A(0,2),B(4,0)兩點.

(1)求直線AB對應的函數(shù)解析式;

(2)將該直線向上平移6個單位,求平移后的直線與x軸交點的坐標.

查看答案和解析>>

同步練習冊答案