(2003•宜昌)已知⊙T與坐標(biāo)軸有四個(gè)不同的交點(diǎn)M、P、N、Q,其中P是直線y=kx-1與y軸的交點(diǎn),點(diǎn)Q與點(diǎn)P關(guān)于原點(diǎn)對(duì)稱.拋物線y=ax2+bx+c經(jīng)過點(diǎn)M、P、N,其頂點(diǎn)為H.
(1)求Q點(diǎn)的坐標(biāo);
(2)指出圓心T一定在哪一條直線上運(yùn)動(dòng);
(3)當(dāng)點(diǎn)H在直線y=kx-1上,且⊙T的半徑等于圓心T到原點(diǎn)距離的倍時(shí),你能確定k的值嗎?若能,請(qǐng)求出k的值;若不能,請(qǐng)你說明理由.(圖供分析參考用)

【答案】分析:(1)根據(jù)過P的直線的解析式即可求出P(-1,0),而Q、P關(guān)于x軸對(duì)稱,由此可求出Q點(diǎn)坐標(biāo).
(2)根據(jù)圓的對(duì)稱性和垂徑定理即可得出圓心必在x軸上運(yùn)動(dòng).
(3)本題可分兩種情況:分兩種情況:①圓心T在x軸負(fù)半軸;②圓心T在x軸正半軸;解法一致.已知了圓的半徑和圓心T到原點(diǎn)距離的倍數(shù)關(guān)系,通過連接TP構(gòu)建直角三角形,可求出圓心的坐標(biāo)和圓的半徑.也就能求出M、N的坐標(biāo),然后根據(jù)M、N、C三點(diǎn)坐標(biāo)即可求出拋物線的解析式也就能得出H點(diǎn)的坐標(biāo),然后將H點(diǎn)坐標(biāo)代入直線的解析式中即可求出k的值.
解答:解:(1)y=kx-1交y于(0,-1)點(diǎn),
∴P點(diǎn)的坐杯為(0,-1)
由Q與P關(guān)于原點(diǎn)對(duì)稱,
∴Q點(diǎn)的坐標(biāo)為(0,1).

(2)已知圓過M、N、P、Q四點(diǎn),根據(jù)圓的對(duì)稱性和垂徑定理可知MN必為圓的直徑,
因此圓心T在x軸上運(yùn)動(dòng).

(3)當(dāng)T在x軸負(fù)半軸上時(shí),連接TP,則TP=OT=,
∴OT=1,△TOP為等腰直角三角形.
∴T(-1,0)
∵圓的半徑TP=
∴M(-1-,0),N(-1,0).
設(shè)拋物線的解析式為y=a(x+1+)(x+1-),
已知拋物線過P(0,-1),
∴a(0+1+)(0+1-)=-1
∴a=1
∴y=x2+2x-1=(x+1)2-2
∴H(-1,-2),代入直線y=kx-1中,
得k=1,
同理可求得當(dāng)T在x軸正半軸上時(shí),k=-1.
因此k的值為±1.
點(diǎn)評(píng):本題主要考查了二次函數(shù)、一次函數(shù)以及圓的相關(guān)知識(shí).難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•宜昌)已知⊙T與坐標(biāo)軸有四個(gè)不同的交點(diǎn)M、P、N、Q,其中P是直線y=kx-1與y軸的交點(diǎn),點(diǎn)Q與點(diǎn)P關(guān)于原點(diǎn)對(duì)稱.拋物線y=ax2+bx+c經(jīng)過點(diǎn)M、P、N,其頂點(diǎn)為H.
(1)求Q點(diǎn)的坐標(biāo);
(2)指出圓心T一定在哪一條直線上運(yùn)動(dòng);
(3)當(dāng)點(diǎn)H在直線y=kx-1上,且⊙T的半徑等于圓心T到原點(diǎn)距離的倍時(shí),你能確定k的值嗎?若能,請(qǐng)求出k的值;若不能,請(qǐng)你說明理由.(圖供分析參考用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《四邊形》(05)(解析版) 題型:解答題

(2003•宜昌)已知菱形ABCD中,對(duì)角線AC和BD相交于點(diǎn)O,∠BAD=120°,求∠ABD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《三角形》(06)(解析版) 題型:解答題

(2003•宜昌)已知:如圖,CF=AE,AB∥CD,且AB=CD.
求證:△CDE≌△ABF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•宜昌)已知:如圖,CF=AE,AB∥CD,且AB=CD.
求證:△CDE≌△ABF.

查看答案和解析>>

同步練習(xí)冊(cè)答案