【題目】如圖,已知AO為Rt△ABC的角平分線,∠ACB=90°,以O為圓心,OC為半徑的圓分別交AO,BC于點(diǎn)D,E,連接ED并延長(zhǎng)交AC于點(diǎn)F.
(1)求證:AB是⊙O的切線;
(2)當(dāng)時(shí),求的值;
(3)在(2)的條件下,若⊙O的半徑為4,求的值.
【答案】(1)證明見解析;(2);(3)的值為.
【解析】
(1)作OG⊥AB于點(diǎn)G,運(yùn)用角平分線的性質(zhì)證明;
(2)根據(jù)線段比例關(guān)系,設(shè)未知數(shù)表示線段AC、BC的長(zhǎng)度,運(yùn)用勾股定理和切線長(zhǎng)定理,求出BG,易證△∽△,根據(jù)相似三角形對(duì)應(yīng)線段成比例求出OG,進(jìn)而分別求出CE
和BE,據(jù)此求解;
(3)由CE==2×4,求出的值,從而求出AC、BC,運(yùn)用勾股定理求出AO,則AD=AO-OD,證明△DFA∽△CDA,根據(jù)對(duì)應(yīng)線段成比例求出AF,則CF=AC-AF,進(jìn)而求出.
(1)證明:作OG⊥AB于點(diǎn)G.
∵∠ACB=90°,
∴BC⊥AC,
∵AO為Rt△ABC的角平分線,
∴OG=OC
∴AB是⊙O的切線;
(2)∵
∴設(shè),,
∵∠ACB=90°
∴,
∵AB、AC是⊙O的切線,
∴
∴,
∵,=90°,
∴∽,
∴,即,
∴,
∴,,
∴;
(3)連接CD.
由(2)得CE==2×4,
解得=3,
∴AC=12,BC=9,
∴AO,
AD=AO﹣OD=4﹣4,
∵CE是O的直徑,
∴∠CDE=90°,
∵∠ACB=90°,
∴∠CDE=∠ACB=90°,
∴∠CED+∠ECD=∠ECD+∠ACD=90°,
∴∠CED=∠ACD,
∵OD=OE,
∴∠CED=∠ODE,
又∵∠ODE=∠ADF,
∴∠ADF=∠ACD,
又∵∠DAF=∠CAD
∴△DFA∽△CDA,
∴,
即,
解得 AF,
CF12﹣,
∴,
故求得的值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2-bx+3的對(duì)稱軸是直線x=-1
(1)求證:2a+b=0;
(2)若關(guān)于x的方程ax2-bx-8=0的一個(gè)根是4,求方程的另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果直線l把△ABC分割后的兩個(gè)部分面積相等,且周長(zhǎng)也相等,那么就把直線l叫做△ABC的“完美分割線”,已知在△ABC中,AB=AC,△ABC的一條“完美分割線”為直線l,且直線l平行于BC,若AB=2,則BC的長(zhǎng)等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某食品廠生產(chǎn)一種半成品食材,成本為2元/千克,每天的產(chǎn)量P(百千克)與銷售價(jià)格x(元/千克)滿足函數(shù)關(guān)系式p=x+8.從市場(chǎng)反饋的信息發(fā)現(xiàn),該食材每天的市場(chǎng)需求量q(百千克)與銷售價(jià)格x(元/千克)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表:
銷售價(jià)格x(元/千克) | 2 | 4 | …… | 10 |
市場(chǎng)需求量q(百千克) | 12 | 10 | …… | 4 |
已知按物價(jià)部門規(guī)定銷售價(jià)格x不低于2元/千克且不高于10元/千克,
(1)直接寫出q與x的函數(shù)關(guān)系式,并注明自變量x的取值范圍;
(2)當(dāng)每天的產(chǎn)量小于或等于市場(chǎng)需求量時(shí),這種食材能全部售出;當(dāng)每天的產(chǎn)量大于市場(chǎng)需求量時(shí),只能售出市場(chǎng)需求的量,而剩余的食材由于保質(zhì)期短作廢棄處理;
①當(dāng)每天的食材能全部售出時(shí),求x的取值范圍;
②求廠家每天獲得的利潤(rùn)y(百元)與銷售價(jià)格x的函數(shù)關(guān)系式;
(3)在(2)的條件下,當(dāng)x為多少時(shí),y有最大值,并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=1,點(diǎn)P在線段AB上運(yùn)動(dòng),設(shè)AP=,現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)P重合,得折痕EF(點(diǎn)E、F為折痕與矩形邊的交點(diǎn)),再將紙片還原.
(1)當(dāng)=0時(shí),折痕EF的長(zhǎng)為 ;當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),折痕EF的長(zhǎng)為 ;
(2)請(qǐng)寫出使四邊形EPFD為菱形的的取值范圍,并求出當(dāng)=2時(shí)菱形的邊長(zhǎng);
(3)令EF2=,當(dāng)點(diǎn)E在AD、點(diǎn)F在BC上時(shí),寫出與的函數(shù)關(guān)系式.當(dāng)取最大值時(shí),判斷△EAP與△PBF是否相似?若相似,求出的值;若不相似,請(qǐng)說明理由.溫馨提示:用草稿紙折折看,或許對(duì)你有所幫助哦!
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績(jī),將學(xué)生的成績(jī)分為A,B,C,D四個(gè)等級(jí),并將結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,但均不完整.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)參加比賽的學(xué)生共有____名;
(2)在扇形統(tǒng)計(jì)圖中,m的值為____,表示“D等級(jí)”的扇形的圓心角為____度;
(3)組委會(huì)決定從本次比賽獲得A等級(jí)的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級(jí)學(xué)生中男生有1名,請(qǐng)用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】好街坊櫥具店購進(jìn)電飯煲和電壓鍋兩種電器進(jìn)行銷售,其進(jìn)價(jià)與售價(jià)如表:
進(jìn)價(jià)(元/臺(tái)) | 售價(jià)(元/臺(tái)) | |
電飯煲 | 200 | 250 |
電壓鍋 | 160 | 200 |
(1)一季度,櫥具店購進(jìn)這兩種電器共 30 臺(tái),用去了 5520 元,并且全部售完,問櫥具店在該買賣中賺了多少錢?
(2)為了滿足市場(chǎng)需求,二季度櫥具店決定用不超過 8850 元的資金采購電飯煲和電壓鍋共 50 臺(tái),且電飯煲的利潤(rùn)不少于電壓鍋的利潤(rùn)的,問櫥具店有哪幾種進(jìn)貨方案?并說明理由;
(3)在(2)的條件下,請(qǐng)你通過計(jì)算判斷,哪種進(jìn)貨方案櫥具店賺錢最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形中,,,,點(diǎn)在邊上,點(diǎn)在四邊形內(nèi)部且到邊、的距離相等,若要使是直角三角形且是等腰三角形,則__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC中,當(dāng)頂角∠A的大小確定時(shí),它的對(duì)邊(即底邊BC)與鄰邊(即腰AB或AC)的比值也就確定,我們把這個(gè)比值記作T(A),即,如T(60°)=1.
(1)理解鞏固:T(90°)= ,T(120°)= ;
(2)學(xué)以致用:如圖2,圓錐的母線長(zhǎng)為9,底面直徑PQ=8,一只螞蟻從P點(diǎn)這沿著圓錐的側(cè)面爬行到點(diǎn)Q.
①求圓錐側(cè)面展開圖的扇形圓心角的數(shù);
②求螞蟻爬行的最短路徑長(zhǎng)(精確到0.1).(參考數(shù)據(jù):T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com